{"title":"Generalisation of the hydrodynamics model method for hot and cold strip rolling application","authors":"Derrez Mimoune, Mohamed Zaaf, Tudor Balan, Abdennacer Lemmoui","doi":"10.1007/s12289-024-01860-w","DOIUrl":null,"url":null,"abstract":"<div><p>The present work constitutes a generalization of the hydrodynamic model used to predict the pressures and the rolling speeds during the hot rolling of aluminum and copper strips. The hydrodynamic model with a linear behavior (Newton viscous) of the materials shows good predictions in the literature but its applicability is questionable in non-linear cases, when the materials exhibit viscoplastic or plastic behavior. This work extends the model to accommodate non-linear cases commonly encountered in rolling models (viscoplastic and plastic behaviors). The obtained results are in good agreement with experimental data from the literature. The validated model can, therefore, be considered an enhanced hydrodynamic model for predicting pressures and velocities during both hot and cold rolling of thin strips.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-024-01860-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-024-01860-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The present work constitutes a generalization of the hydrodynamic model used to predict the pressures and the rolling speeds during the hot rolling of aluminum and copper strips. The hydrodynamic model with a linear behavior (Newton viscous) of the materials shows good predictions in the literature but its applicability is questionable in non-linear cases, when the materials exhibit viscoplastic or plastic behavior. This work extends the model to accommodate non-linear cases commonly encountered in rolling models (viscoplastic and plastic behaviors). The obtained results are in good agreement with experimental data from the literature. The validated model can, therefore, be considered an enhanced hydrodynamic model for predicting pressures and velocities during both hot and cold rolling of thin strips.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.