{"title":"Synthesis of Biogenic Gd2ZnMnO6 Nanofibrous for Creation of 3-Aryl-2-oxazolidinones from Alkenes, Carbon Dioxide, and Amines","authors":"Shulong Liu, Xuechen Huang, Jinfeng Zhang","doi":"10.1007/s10562-024-04795-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, microorganisms were used to produce Gd<sub>2</sub>ZnMnO<sub>6</sub> NFs in a biological process instead of a chemical method as a nanocatalyst. Considering the capability of the microorganisms to synthesize nanofibrous (NFs) upon exposure to metal ions, microorganisms were employed to produce Gd<sub>2</sub>ZnMnO<sub>6</sub> NFs through a biological process. The utilization of chemical modification to fabricate environmentally friendly heterogeneous nanocatalysts has proven to be highly appealing in the context of synthesizing 3-aryl-2-oxazolidinones using alkenes, carbon dioxide, and amines in an aqueous solution. The role of diverse variables in the creation of 3-aryl-2-oxazolidinones has been thoroughly investigated. Notably, Gd<sub>2</sub>ZnMnO<sub>6</sub> NFs demonstrates remarkable efficiency in the production of 3-aryl-2-oxazolidinones due to its unique morphology. The morphology of Gd<sub>2</sub>ZnMnO<sub>6</sub> NFs contributed to the creation of a desirable outer layer for the creation of 3-aryl-2-oxazolidinones. The findings demonstrated that the utilization of Gd<sub>2</sub>ZnMnO<sub>6</sub> nanofibers positively impacts the effectiveness of the creation of 3-aryl-2-oxazolidinones. This can be attributed to the nanofibers' impressive mechanical and ionic internal characteristics, as well as their exceptional thermal sustainability and persistent colloidal sturdiness. Consequently, employing the host–guest method, the system could be regarded as an exemplary nanocatalyst. A diverse array of olefins was successfully transformed into desirable products, independent of the electronic nature of the substitutes. The involvement of heterogeneous mixtures did not impede the progression of the reaction. Moreover, the 3-aryl-2-oxazolidinones were easily distinguished from the Gd<sub>2</sub>ZnMnO<sub>6</sub> nanofibers, and the medium exhibited the ability to undergo multiple cycles of usage without experiencing a notable decline in their catalytic activity and selectivity. This approach offers notable advantages, including a strong economic capability and the potential to withstand functional groups.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div><p>Synthesis of biogenic Gd2ZnMnO6 nanofibrous for creation of 3-Aryl-2-oxazolidinones from alkenes, carbon dioxide, and aminesSynthesis of biogenic Gd2ZnMnO6 nanofibrous for creation of 3-Aryl-2-oxazolidinones from alkenes, carbon dioxide, and amines</p></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"154 11","pages":"6180 - 6193"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-024-04795-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, microorganisms were used to produce Gd2ZnMnO6 NFs in a biological process instead of a chemical method as a nanocatalyst. Considering the capability of the microorganisms to synthesize nanofibrous (NFs) upon exposure to metal ions, microorganisms were employed to produce Gd2ZnMnO6 NFs through a biological process. The utilization of chemical modification to fabricate environmentally friendly heterogeneous nanocatalysts has proven to be highly appealing in the context of synthesizing 3-aryl-2-oxazolidinones using alkenes, carbon dioxide, and amines in an aqueous solution. The role of diverse variables in the creation of 3-aryl-2-oxazolidinones has been thoroughly investigated. Notably, Gd2ZnMnO6 NFs demonstrates remarkable efficiency in the production of 3-aryl-2-oxazolidinones due to its unique morphology. The morphology of Gd2ZnMnO6 NFs contributed to the creation of a desirable outer layer for the creation of 3-aryl-2-oxazolidinones. The findings demonstrated that the utilization of Gd2ZnMnO6 nanofibers positively impacts the effectiveness of the creation of 3-aryl-2-oxazolidinones. This can be attributed to the nanofibers' impressive mechanical and ionic internal characteristics, as well as their exceptional thermal sustainability and persistent colloidal sturdiness. Consequently, employing the host–guest method, the system could be regarded as an exemplary nanocatalyst. A diverse array of olefins was successfully transformed into desirable products, independent of the electronic nature of the substitutes. The involvement of heterogeneous mixtures did not impede the progression of the reaction. Moreover, the 3-aryl-2-oxazolidinones were easily distinguished from the Gd2ZnMnO6 nanofibers, and the medium exhibited the ability to undergo multiple cycles of usage without experiencing a notable decline in their catalytic activity and selectivity. This approach offers notable advantages, including a strong economic capability and the potential to withstand functional groups.
Graphical Abstract
Synthesis of biogenic Gd2ZnMnO6 nanofibrous for creation of 3-Aryl-2-oxazolidinones from alkenes, carbon dioxide, and aminesSynthesis of biogenic Gd2ZnMnO6 nanofibrous for creation of 3-Aryl-2-oxazolidinones from alkenes, carbon dioxide, and amines
期刊介绍:
Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.
The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.