Optimization of monocrystalline silicon solar cell using Box–Behnken design and machine learning models

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY The European Physical Journal Plus Pub Date : 2024-10-21 DOI:10.1140/epjp/s13360-024-05723-w
Zouhour Rhaim, Fraj Echouchene, Sabra Habli, Mohamed Hichem Gazzah, Mohammed A. Albedah, Hafedh Belmabrouk
{"title":"Optimization of monocrystalline silicon solar cell using Box–Behnken design and machine learning models","authors":"Zouhour Rhaim,&nbsp;Fraj Echouchene,&nbsp;Sabra Habli,&nbsp;Mohamed Hichem Gazzah,&nbsp;Mohammed A. Albedah,&nbsp;Hafedh Belmabrouk","doi":"10.1140/epjp/s13360-024-05723-w","DOIUrl":null,"url":null,"abstract":"<div><p>This work integrates PC1D simulation, Box–Behnken design (BBD), and machine learning models (artificial neural network—ANN and particle swarm optimization-artificial neural network—PSO-ANN) to optimize monocrystalline silicon solar cells. Using the global desirability function, the optimal efficiency of 23.29% is obtained under certain conditions: <i>p</i>-type doping concentration (3.32 × 10<sup>17</sup> cm<sup>−3</sup>), n-type doping concentration (6 × 10<sup>17</sup> cm<sup>−3</sup>), textured wafer pyramid height (1 µm), textured wafer pyramid angle (80.67°), and temperature (20 °C). Notably, the PSO-ANN model outperforms the ANN model with an RMSE of 0.0149 and a correlation coefficient of 0.9997. This study demonstrates the effectiveness of advanced modeling and machine learning in increasing solar cell efficiency and highlights the superior performance of the PSO-ANN model.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjp/s13360-024-05723-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-024-05723-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work integrates PC1D simulation, Box–Behnken design (BBD), and machine learning models (artificial neural network—ANN and particle swarm optimization-artificial neural network—PSO-ANN) to optimize monocrystalline silicon solar cells. Using the global desirability function, the optimal efficiency of 23.29% is obtained under certain conditions: p-type doping concentration (3.32 × 1017 cm−3), n-type doping concentration (6 × 1017 cm−3), textured wafer pyramid height (1 µm), textured wafer pyramid angle (80.67°), and temperature (20 °C). Notably, the PSO-ANN model outperforms the ANN model with an RMSE of 0.0149 and a correlation coefficient of 0.9997. This study demonstrates the effectiveness of advanced modeling and machine learning in increasing solar cell efficiency and highlights the superior performance of the PSO-ANN model.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用盒式贝肯设计和机器学习模型优化单晶硅太阳能电池
这项研究综合运用 PC1D 仿真、盒式贝肯设计(BBD)和机器学习模型(人工神经网络-ANN 和粒子群优化-人工神经网络-PSO-ANN)来优化单晶硅太阳能电池。利用全局可取函数,在特定条件下获得了 23.29% 的最佳效率:p 型掺杂浓度(3.32 × 1017 cm-3)、n 型掺杂浓度(6 × 1017 cm-3)、纹理晶片金字塔高度(1 µm)、纹理晶片金字塔角度(80.67°)和温度(20 °C)。值得注意的是,PSO-ANN 模型的 RMSE 为 0.0149,相关系数为 0.9997,优于 ANN 模型。这项研究证明了先进建模和机器学习在提高太阳能电池效率方面的有效性,并凸显了 PSO-ANN 模型的卓越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The European Physical Journal Plus
The European Physical Journal Plus PHYSICS, MULTIDISCIPLINARY-
CiteScore
5.40
自引率
8.80%
发文量
1150
审稿时长
4-8 weeks
期刊介绍: The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences. The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.
期刊最新文献
A polar diatomic molecule under a high-frequency laser field: classical analytical solution Position dependent mass (PDM) Klein–Gordon scalar particles in Bonnor-Melvin-Lambda space-time Controllable multi-scroll chaotic attractors with multiple wings in Chua’s system Shortcut-to-adiabaticity for coupled harmonic oscillators Evaluating the influence of step size in macro-raman mapping experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1