Coupled cylindrical quantum well wires in broken symmetry: effects of intense laser field on the harmonic generations

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY The European Physical Journal Plus Pub Date : 2024-10-21 DOI:10.1140/epjp/s13360-024-05715-w
B. O. Alaydin, O. Ozturk, D. Altun, E. Ozturk
{"title":"Coupled cylindrical quantum well wires in broken symmetry: effects of intense laser field on the harmonic generations","authors":"B. O. Alaydin,&nbsp;O. Ozturk,&nbsp;D. Altun,&nbsp;E. Ozturk","doi":"10.1140/epjp/s13360-024-05715-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the high harmonic generations in GaAs/Al<sub>x</sub>Ga<sub>1-x</sub>As asymmetric coupled cylindrical quantum well wires (CCQWWs) under varying intense laser fields (ILFs). The structural parameters and theoretical framework are detailed, including the Schrödinger equation for the CCQWW heterojunction and the Floquet method to model ILF effects. Numerical simulations reveal alterations in the confinement potential and energy states of CCQWWs with increasing ILF intensity. Notably, significant changes occur in the potential well shape, influencing the localization of energy states. Transition energies and dipole moment matrix elements are analyzed, highlighting shifts in resonance peaks and their intensities. The study identifies blue-shift points at α<sub>0</sub> (ILF parameter) values of 4.4 nm, 4.7 nm, and 3.7 nm for transition energies E<sub>21</sub>, E<sub>31</sub>/2, and E<sub>41</sub>/3, respectively, followed by red-shift trends as α<sub>0</sub> increases further. Maximum enhancements are observed in the second harmonic generation coefficient at ILF α<sub>0</sub> = 6 nm and the third harmonic generation coefficient at α<sub>0</sub> = 8 nm, which is 1000 times higher than at α<sub>0</sub> = 0 nm. These findings underscore the potential for enhancing semiconductor device production through optimized ILF induced high harmonic generation.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjp/s13360-024-05715-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-024-05715-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the high harmonic generations in GaAs/AlxGa1-xAs asymmetric coupled cylindrical quantum well wires (CCQWWs) under varying intense laser fields (ILFs). The structural parameters and theoretical framework are detailed, including the Schrödinger equation for the CCQWW heterojunction and the Floquet method to model ILF effects. Numerical simulations reveal alterations in the confinement potential and energy states of CCQWWs with increasing ILF intensity. Notably, significant changes occur in the potential well shape, influencing the localization of energy states. Transition energies and dipole moment matrix elements are analyzed, highlighting shifts in resonance peaks and their intensities. The study identifies blue-shift points at α0 (ILF parameter) values of 4.4 nm, 4.7 nm, and 3.7 nm for transition energies E21, E31/2, and E41/3, respectively, followed by red-shift trends as α0 increases further. Maximum enhancements are observed in the second harmonic generation coefficient at ILF α0 = 6 nm and the third harmonic generation coefficient at α0 = 8 nm, which is 1000 times higher than at α0 = 0 nm. These findings underscore the potential for enhancing semiconductor device production through optimized ILF induced high harmonic generation.

Graphical abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
破对称耦合圆柱形量子阱导线:强激光场对谐波发生的影响
本研究探讨了 GaAs/AlxGa1-xAs 非对称耦合圆柱量子阱线 (CCQWW) 在不同强激光场 (ILF) 下的高次谐波产生。详细介绍了结构参数和理论框架,包括 CCQWW 异质结的薛定谔方程和模拟 ILF 效应的 Floquet 方法。数值模拟揭示了随着ILF强度的增加,CCQWW的约束势和能态的变化。值得注意的是,势阱形状发生了重大变化,影响了能态的定位。研究分析了转换能量和偶极矩矩阵元素,突出了共振峰及其强度的变化。研究发现,当转换能量 E21、E31/2 和 E41/3 的 α0(ILF 参数)值分别为 4.4 nm、4.7 nm 和 3.7 nm 时,会出现蓝移点。在 ILF α0 = 6 nm 时,二次谐波发生系数和三次谐波发生系数在 α0 = 8 nm 时达到最大值,是 α0 = 0 nm 时的 1000 倍。这些发现强调了通过优化 ILF 诱导的高次谐波生成来提高半导体器件生产的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The European Physical Journal Plus
The European Physical Journal Plus PHYSICS, MULTIDISCIPLINARY-
CiteScore
5.40
自引率
8.80%
发文量
1150
审稿时长
4-8 weeks
期刊介绍: The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences. The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.
期刊最新文献
A polar diatomic molecule under a high-frequency laser field: classical analytical solution Position dependent mass (PDM) Klein–Gordon scalar particles in Bonnor-Melvin-Lambda space-time Controllable multi-scroll chaotic attractors with multiple wings in Chua’s system Shortcut-to-adiabaticity for coupled harmonic oscillators Evaluating the influence of step size in macro-raman mapping experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1