Evolution of Reactive Organic Compounds and Their Potential Health Risk in Wildfire Smoke.

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2024-10-22 DOI:10.1021/acs.est.4c06187
Havala O T Pye, Lu Xu, Barron H Henderson, Demetrios Pagonis, Pedro Campuzano-Jost, Hongyu Guo, Jose L Jimenez, Christine Allen, T Nash Skipper, Hannah S Halliday, Benjamin N Murphy, Emma L D'Ambro, Paul O Wennberg, Bryan K Place, Forwood C Wiser, V Faye McNeill, Eric C Apel, Donald R Blake, Matthew M Coggon, John D Crounse, Jessica B Gilman, Georgios I Gkatzelis, Thomas F Hanisco, L Gregory Huey, Joseph M Katich, Aaron Lamplugh, Jakob Lindaas, Jeff Peischl, Jason M St Clair, Carsten Warneke, Glenn M Wolfe, Caroline Womack
{"title":"Evolution of Reactive Organic Compounds and Their Potential Health Risk in Wildfire Smoke.","authors":"Havala O T Pye, Lu Xu, Barron H Henderson, Demetrios Pagonis, Pedro Campuzano-Jost, Hongyu Guo, Jose L Jimenez, Christine Allen, T Nash Skipper, Hannah S Halliday, Benjamin N Murphy, Emma L D'Ambro, Paul O Wennberg, Bryan K Place, Forwood C Wiser, V Faye McNeill, Eric C Apel, Donald R Blake, Matthew M Coggon, John D Crounse, Jessica B Gilman, Georgios I Gkatzelis, Thomas F Hanisco, L Gregory Huey, Joseph M Katich, Aaron Lamplugh, Jakob Lindaas, Jeff Peischl, Jason M St Clair, Carsten Warneke, Glenn M Wolfe, Caroline Womack","doi":"10.1021/acs.est.4c06187","DOIUrl":null,"url":null,"abstract":"<p><p>Wildfires are an increasing source of emissions into the air, with health effects modulated by the abundance and toxicity of individual species. In this work, we estimate reactive organic compounds (ROC) in western U.S. wildland forest fire smoke using a combination of observations from the 2019 Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) field campaign and predictions from the Community Multiscale Air Quality (CMAQ) model. Standard emission inventory methods capture 40-45% of the estimated ROC mass emitted, with estimates of primary organic aerosol particularly low (5-8×). Downwind, gas-phase species abundances in molar units reflect the production of fragmentation products such as formaldehyde and methanol. Mass-based units emphasize larger compounds, which tend to be unidentified at an individual species level, are less volatile, and are typically not measured in the gas phase. Fire emissions are estimated to total 1250 ± 60 g·C of ROC per kg·C of CO, implying as much carbon is emitted as ROC as is emitted as CO. Particulate ROC has the potential to dominate the cancer and noncancer risk of long-term exposure to inhaled smoke, and better constraining these estimates will require information on the toxicity of particulate ROC from forest fires.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c06187","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Wildfires are an increasing source of emissions into the air, with health effects modulated by the abundance and toxicity of individual species. In this work, we estimate reactive organic compounds (ROC) in western U.S. wildland forest fire smoke using a combination of observations from the 2019 Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) field campaign and predictions from the Community Multiscale Air Quality (CMAQ) model. Standard emission inventory methods capture 40-45% of the estimated ROC mass emitted, with estimates of primary organic aerosol particularly low (5-8×). Downwind, gas-phase species abundances in molar units reflect the production of fragmentation products such as formaldehyde and methanol. Mass-based units emphasize larger compounds, which tend to be unidentified at an individual species level, are less volatile, and are typically not measured in the gas phase. Fire emissions are estimated to total 1250 ± 60 g·C of ROC per kg·C of CO, implying as much carbon is emitted as ROC as is emitted as CO. Particulate ROC has the potential to dominate the cancer and noncancer risk of long-term exposure to inhaled smoke, and better constraining these estimates will require information on the toxicity of particulate ROC from forest fires.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Electrochemical Acid-Base Transport Limitation Principle for Low Electroactive Analyte Sensing in Wastewater Monitoring. Selective O2-to-H2O2 Electrosynthesis by a High-Performance, Single-Pass Electrofiltration System Using Ibuprofen-Laden CNT Membranes. Regulation of Ocean Surface Currents and Seasonal Sea Ice Variations on the Occurrence and Transport of Organophosphate Esters in the Central Arctic Ocean. Rethinking Porosity-Based Diffusivity Estimates for Sorptive Gas Transport at Variable Temperatures. Benzo(a)anthracene Targeting SLC1A5 to Synergistically Enhance PAH Mixture Toxicity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1