Urte Tomasiunaite, Tess Brewer, Korinna Burdack, Sophie Brameyer, Kirsten Jung
{"title":"Versatile Dual Reporter to Identify Ribosome Pausing Motifs Alleviated by Translation Elongation Factor P.","authors":"Urte Tomasiunaite, Tess Brewer, Korinna Burdack, Sophie Brameyer, Kirsten Jung","doi":"10.1021/acssynbio.4c00534","DOIUrl":null,"url":null,"abstract":"<p><p>Protein synthesis is influenced by the chemical and structural properties of the amino acids incorporated into the polypeptide chain. Motifs containing consecutive prolines can slow the translation speed and cause ribosome stalling. Translation elongation factor P (EF-P) facilitates peptide bond formation in these motifs, thereby alleviating stalled ribosomes and restoring the regular translational speed. Ribosome pausing at various polyproline motifs has been intensively studied using a range of sophisticated techniques, including ribosome profiling, proteomics, and in vivo screening, with reporters incorporated into the chromosome. However, the full spectrum of motifs that cause translational pausing in <i>Escherichia coli</i> has not yet been identified. Here, we describe a plasmid-based dual reporter for rapid assessment of pausing motifs. This reporter contains two coupled genes encoding mScarlet-I and chloramphenicol acetyltransferase to screen motif libraries based on both bacterial fluorescence and survival. In combination with a diprolyl motif library, we used this reporter to reveal motifs of different pausing strengths in an <i>E. coli</i> strain lacking <i>efp</i>. Subsequently, we used the reporter for a high-throughput screen of four motif libraries, with and without prolines at different positions, sorted by fluorescence-associated cell sorting (FACS) and identify new motifs that influence the translational efficiency of the fluorophore. Our study provides an in vivo platform for rapid screening of amino acid motifs that affect translational efficiencies.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":"3698-3710"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00534","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Protein synthesis is influenced by the chemical and structural properties of the amino acids incorporated into the polypeptide chain. Motifs containing consecutive prolines can slow the translation speed and cause ribosome stalling. Translation elongation factor P (EF-P) facilitates peptide bond formation in these motifs, thereby alleviating stalled ribosomes and restoring the regular translational speed. Ribosome pausing at various polyproline motifs has been intensively studied using a range of sophisticated techniques, including ribosome profiling, proteomics, and in vivo screening, with reporters incorporated into the chromosome. However, the full spectrum of motifs that cause translational pausing in Escherichia coli has not yet been identified. Here, we describe a plasmid-based dual reporter for rapid assessment of pausing motifs. This reporter contains two coupled genes encoding mScarlet-I and chloramphenicol acetyltransferase to screen motif libraries based on both bacterial fluorescence and survival. In combination with a diprolyl motif library, we used this reporter to reveal motifs of different pausing strengths in an E. coli strain lacking efp. Subsequently, we used the reporter for a high-throughput screen of four motif libraries, with and without prolines at different positions, sorted by fluorescence-associated cell sorting (FACS) and identify new motifs that influence the translational efficiency of the fluorophore. Our study provides an in vivo platform for rapid screening of amino acid motifs that affect translational efficiencies.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.