Ultra-Narrowband Circularly Polarized Luminescence from Multiple 1,4-Azaborine-Embedded Helical Nanographenes.

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-10-22 DOI:10.1021/jacs.4c11404
Fangyuan Zhang, Vincenzo Brancaccio, Fridolin Saal, Upasana Deori, Krzysztof Radacki, Holger Braunschweig, Pachaiyappan Rajamalli, Prince Ravat
{"title":"Ultra-Narrowband Circularly Polarized Luminescence from Multiple 1,4-Azaborine-Embedded Helical Nanographenes.","authors":"Fangyuan Zhang, Vincenzo Brancaccio, Fridolin Saal, Upasana Deori, Krzysztof Radacki, Holger Braunschweig, Pachaiyappan Rajamalli, Prince Ravat","doi":"10.1021/jacs.4c11404","DOIUrl":null,"url":null,"abstract":"<p><p>In this manuscript we present a strategy to achieve ultranarrowband circularly polarized luminescence (CPL) from multiple 1,4-azaborine-embedded helical nanographenes. The impact of number and position of boron and nitrogen atoms in the rigid core of the molecule on optical properties─including absorption and emission maxima, photoluminescence quantum yield, Stokes shift, excited singlet-triplet energy gap and full width at half-maximum (fwhm) for CPL and fluorescence─was investigated. The molecules reported here exhibits ultranarrowband fluorescence (fwhm 16-17.5 nm in toluene) and CPL (fwhm 18-19 nm in toluene). To the best of our knowledge, this is among the narrowest CPL for any organic molecule reported to date. Quantum chemical calculations, including computed CPL spectra involving vibronic contributions, provide valuable insights for future molecular design aimed at achieving narrowband CPL.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c11404","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this manuscript we present a strategy to achieve ultranarrowband circularly polarized luminescence (CPL) from multiple 1,4-azaborine-embedded helical nanographenes. The impact of number and position of boron and nitrogen atoms in the rigid core of the molecule on optical properties─including absorption and emission maxima, photoluminescence quantum yield, Stokes shift, excited singlet-triplet energy gap and full width at half-maximum (fwhm) for CPL and fluorescence─was investigated. The molecules reported here exhibits ultranarrowband fluorescence (fwhm 16-17.5 nm in toluene) and CPL (fwhm 18-19 nm in toluene). To the best of our knowledge, this is among the narrowest CPL for any organic molecule reported to date. Quantum chemical calculations, including computed CPL spectra involving vibronic contributions, provide valuable insights for future molecular design aimed at achieving narrowband CPL.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
cis-Dihydroxylation by Synthetic Iron(III)-Peroxo Intermediates and Rieske Dioxygenases: Experimental and Theoretical Approaches Reveal the Key O-O Bond Activation Step. Retraction of "Solvent Polarity under Vibrational Strong Coupling". Ultra-Narrowband Circularly Polarized Luminescence from Multiple 1,4-Azaborine-Embedded Helical Nanographenes. Skeletal Editing of Mechanically Interlocked Molecules: Nitrogen Atom Deletion from Crown Ether-Dibenzylammonium Rotaxanes Microdroplet-Mediated Multiphase Cycling in a Cloud of Water Drives Chemoselective Electrolysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1