{"title":"Photoinduced Copper-Catalyzed Cross-Coupling of Acylsilanes with Heteroarenes via Bimetallic Relay.","authors":"Long Zheng, Ying-Chao Li, Yichen Wu, Peng Wang","doi":"10.1002/advs.202409457","DOIUrl":null,"url":null,"abstract":"<p><p>The transition metal-catalyzed direct coupling reactions involving electron-rich Fischer carbene species are largely underdeveloped and remain a big challenge. Here, a direct coupling reaction of azoles and azine N-oxides is reported with Fischer copper carbene species bearing an α-siloxy group i, which can be in situ generated from acylsilanes catalytically under photoirradiation and redox-neutral conditions. This coupling reaction between electron-rich α-siloxy Fischer Cu-carbene species with hard carbanion nucleophiles may undergo a bimetallic relay process, which is confirmed by the kinetic analysis and in situ NMR analysis. This reaction features mild conditions and remarkable heterocycle compatibility. Notably, this protocol tolerates a series of azole or azine N-oxide derivatives, including benzoxazole, benzothiazole, benzoimidazole, benzoisoxazole, oxazole, oxadiazole, triazolo[4,3-a]pyridine, purine, caffeine, pyridine N-oxide, quinoline N-oxide, pyrazine N-oxide, pyridazine N-oxide, etc. The synthetic value of this approach is demonstrated by the efficient synthesis of a histamine h4 receptor ligand and a marketed drug carbinoxamine.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202409457","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The transition metal-catalyzed direct coupling reactions involving electron-rich Fischer carbene species are largely underdeveloped and remain a big challenge. Here, a direct coupling reaction of azoles and azine N-oxides is reported with Fischer copper carbene species bearing an α-siloxy group i, which can be in situ generated from acylsilanes catalytically under photoirradiation and redox-neutral conditions. This coupling reaction between electron-rich α-siloxy Fischer Cu-carbene species with hard carbanion nucleophiles may undergo a bimetallic relay process, which is confirmed by the kinetic analysis and in situ NMR analysis. This reaction features mild conditions and remarkable heterocycle compatibility. Notably, this protocol tolerates a series of azole or azine N-oxide derivatives, including benzoxazole, benzothiazole, benzoimidazole, benzoisoxazole, oxazole, oxadiazole, triazolo[4,3-a]pyridine, purine, caffeine, pyridine N-oxide, quinoline N-oxide, pyrazine N-oxide, pyridazine N-oxide, etc. The synthetic value of this approach is demonstrated by the efficient synthesis of a histamine h4 receptor ligand and a marketed drug carbinoxamine.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.