Low-calorie, high-protein diets, regardless of protein source, improve glucose metabolism and cardiometabolic profiles in subjects with prediabetes or type 2 diabetes and overweight or obesity.
Carmen Rodrigo-Carbó, Loreto Madinaveitia-Nisarre, Sofía Pérez-Calahorra, Irene Gracia-Rubio, Alberto Cebollada, Carlos Galindo-Lalana, Rocío Mateo-Gallego, Itziar Lamiquiz-Moneo
{"title":"Low-calorie, high-protein diets, regardless of protein source, improve glucose metabolism and cardiometabolic profiles in subjects with prediabetes or type 2 diabetes and overweight or obesity.","authors":"Carmen Rodrigo-Carbó, Loreto Madinaveitia-Nisarre, Sofía Pérez-Calahorra, Irene Gracia-Rubio, Alberto Cebollada, Carlos Galindo-Lalana, Rocío Mateo-Gallego, Itziar Lamiquiz-Moneo","doi":"10.1111/dom.16013","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>The aim was to study the effect of two low-calorie, high-protein (HP) diets, with most of the protein coming from animal or plant sources, on glycaemic and other cardiometabolic outcomes in subjects with overweight or obesity and glucose metabolism disorders.</p><p><strong>Materials and methods: </strong>A total of 117 participants aged >18 years with body mass index over 27.5 kg/m<sup>2</sup> and prediabetes or type 2 diabetes mellitus (T2DM) were randomized to one of two HP low-calorie diets (35% of total calories from protein), in which 75% of the protein was from either plant-based sources (HPP) or animal sources (HPA). For both diets, 30% and 35% of the total calories were from fat and carbohydrates, respectively. The dietary intervention lasted 6 months.</p><p><strong>Results: </strong>Both diets improved body composition to a similar extent, including weight loss (-8.05 ± 5.12 kg for the HPA diet and -7.70 ± 5.47 kg for the HPP diet at 6 months) and fat mass, mainly visceral fat. Both diets had a similar beneficial effect on glucose metabolism, including fasting glucose, insulin, homeostasis model assessment of insulin resistance index and glycated haemoglobin. Other biochemical parameters, including lipid profiles, liver enzymes, adipokines and inflammatory biomarkers, similarly improved in both groups. Fasting incretins, mainly glucagon-like peptide 1, decreased significantly in both groups, and this effect correlated with weight loss.</p><p><strong>Conclusions: </strong>Low-calorie HP diets improved body composition, glucose metabolism and other cardiometabolic outcomes, regardless of protein source (either animal or plant sources), in outpatients with prediabetes or T2DM.</p><p><strong>Clinical trial registration: </strong>The clinical trial was registered in ClinicalTrials.gov (identifier: NCT05456347) https://clinicaltrials.gov/study/NCT05456347?term=NCT05456347&rank=1.</p>","PeriodicalId":158,"journal":{"name":"Diabetes, Obesity & Metabolism","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes, Obesity & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/dom.16013","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: The aim was to study the effect of two low-calorie, high-protein (HP) diets, with most of the protein coming from animal or plant sources, on glycaemic and other cardiometabolic outcomes in subjects with overweight or obesity and glucose metabolism disorders.
Materials and methods: A total of 117 participants aged >18 years with body mass index over 27.5 kg/m2 and prediabetes or type 2 diabetes mellitus (T2DM) were randomized to one of two HP low-calorie diets (35% of total calories from protein), in which 75% of the protein was from either plant-based sources (HPP) or animal sources (HPA). For both diets, 30% and 35% of the total calories were from fat and carbohydrates, respectively. The dietary intervention lasted 6 months.
Results: Both diets improved body composition to a similar extent, including weight loss (-8.05 ± 5.12 kg for the HPA diet and -7.70 ± 5.47 kg for the HPP diet at 6 months) and fat mass, mainly visceral fat. Both diets had a similar beneficial effect on glucose metabolism, including fasting glucose, insulin, homeostasis model assessment of insulin resistance index and glycated haemoglobin. Other biochemical parameters, including lipid profiles, liver enzymes, adipokines and inflammatory biomarkers, similarly improved in both groups. Fasting incretins, mainly glucagon-like peptide 1, decreased significantly in both groups, and this effect correlated with weight loss.
Conclusions: Low-calorie HP diets improved body composition, glucose metabolism and other cardiometabolic outcomes, regardless of protein source (either animal or plant sources), in outpatients with prediabetes or T2DM.
Clinical trial registration: The clinical trial was registered in ClinicalTrials.gov (identifier: NCT05456347) https://clinicaltrials.gov/study/NCT05456347?term=NCT05456347&rank=1.
期刊介绍:
Diabetes, Obesity and Metabolism is primarily a journal of clinical and experimental pharmacology and therapeutics covering the interrelated areas of diabetes, obesity and metabolism. The journal prioritises high-quality original research that reports on the effects of new or existing therapies, including dietary, exercise and lifestyle (non-pharmacological) interventions, in any aspect of metabolic and endocrine disease, either in humans or animal and cellular systems. ‘Metabolism’ may relate to lipids, bone and drug metabolism, or broader aspects of endocrine dysfunction. Preclinical pharmacology, pharmacokinetic studies, meta-analyses and those addressing drug safety and tolerability are also highly suitable for publication in this journal. Original research may be published as a main paper or as a research letter.