Gene Expression Shifts in Emperor Penguin Adaptation to the Extreme Antarctic Environment.

IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Ecology Pub Date : 2024-10-17 DOI:10.1111/mec.17552
Josephine R Paris, Flávia A Nitta Fernandes, Federica Pirri, Samuele Greco, Marco Gerdol, Alberto Pallavicini, Marine Benoiste, Clément Cornec, Lorenzo Zane, Brian Haas, Céline Le Bohec, Emiliano Trucchi
{"title":"Gene Expression Shifts in Emperor Penguin Adaptation to the Extreme Antarctic Environment.","authors":"Josephine R Paris, Flávia A Nitta Fernandes, Federica Pirri, Samuele Greco, Marco Gerdol, Alberto Pallavicini, Marine Benoiste, Clément Cornec, Lorenzo Zane, Brian Haas, Céline Le Bohec, Emiliano Trucchi","doi":"10.1111/mec.17552","DOIUrl":null,"url":null,"abstract":"<p><p>Gene expression can accelerate ecological divergence by rapidly tweaking the response of an organism to novel environments, with more divergent environments exerting stronger selection and supposedly, requiring faster adaptive responses. Organisms adapted to extreme environments provide ideal systems to test this hypothesis, particularly when compared to related species with milder ecological niches. The Emperor penguin (Aptenodytes forsteri) is the only endothermic vertebrate breeding in the harsh Antarctic winter, in stark contrast with the less cold-adapted sister species, the King penguin (A. patagonicus). Assembling the first de novo transcriptomes and analysing multi-tissue (brain, kidney, liver, muscle, skin) RNA-Seq data from natural populations of both species, we quantified the shifts in tissue-enhanced genes, co-expression gene networks, and differentially expressed genes characterising Emperor penguin adaptation to the extreme Antarctic. Our analyses revealed the crucial role played by muscle and liver in temperature homeostasis, fasting, and whole-body energy metabolism (glucose/insulin regulation, lipid metabolism, fatty acid beta-oxidation, and blood coagulation). Repatterning at the regulatory level appears as more important in the brain of the Emperor penguin, showing the lowest signature of differential gene expression, but the largest co-expression gene network shift. Nevertheless, over-expressed genes related to mTOR signalling in the brain and the liver support their central role in cold and fasting responses. Besides contributing to understanding the genetics underlying complex traits, like body energy reservoir management, our results provide a first insight into the role of gene expression in adaptation to one of the most extreme environmental conditions endured by an endotherm.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17552"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17552","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gene expression can accelerate ecological divergence by rapidly tweaking the response of an organism to novel environments, with more divergent environments exerting stronger selection and supposedly, requiring faster adaptive responses. Organisms adapted to extreme environments provide ideal systems to test this hypothesis, particularly when compared to related species with milder ecological niches. The Emperor penguin (Aptenodytes forsteri) is the only endothermic vertebrate breeding in the harsh Antarctic winter, in stark contrast with the less cold-adapted sister species, the King penguin (A. patagonicus). Assembling the first de novo transcriptomes and analysing multi-tissue (brain, kidney, liver, muscle, skin) RNA-Seq data from natural populations of both species, we quantified the shifts in tissue-enhanced genes, co-expression gene networks, and differentially expressed genes characterising Emperor penguin adaptation to the extreme Antarctic. Our analyses revealed the crucial role played by muscle and liver in temperature homeostasis, fasting, and whole-body energy metabolism (glucose/insulin regulation, lipid metabolism, fatty acid beta-oxidation, and blood coagulation). Repatterning at the regulatory level appears as more important in the brain of the Emperor penguin, showing the lowest signature of differential gene expression, but the largest co-expression gene network shift. Nevertheless, over-expressed genes related to mTOR signalling in the brain and the liver support their central role in cold and fasting responses. Besides contributing to understanding the genetics underlying complex traits, like body energy reservoir management, our results provide a first insight into the role of gene expression in adaptation to one of the most extreme environmental conditions endured by an endotherm.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
帝企鹅适应南极极端环境的基因表达变化。
基因表达可以通过快速调整生物体对新环境的反应来加速生态分化,分化程度越高的环境会产生越强的选择,因此需要更快的适应性反应。适应极端环境的生物为检验这一假说提供了理想的系统,尤其是与生态位较温和的相关物种相比。帝企鹅(Aptenodytes forsteri)是唯一一种在严酷的南极冬季繁殖的内温脊椎动物,这与不太适应寒冷环境的姊妹物种帝企鹅(A. patagonicus)形成了鲜明对比。我们组装了第一个全新的转录组,并分析了来自这两个物种自然种群的多组织(脑、肾、肝、肌肉、皮肤)RNA-Seq数据,量化了组织增强基因、共表达基因网络和差异表达基因的变化,这些都是帝企鹅适应极端南极环境的特征。我们的分析揭示了肌肉和肝脏在温度平衡、禁食和全身能量代谢(葡萄糖/胰岛素调节、脂质代谢、脂肪酸β-氧化和血液凝固)中的关键作用。在帝企鹅的大脑中,调控水平上的重组显得更为重要,显示出最低的差异基因表达特征,但共表达基因网络的变化却最大。尽管如此,大脑和肝脏中与mTOR信号有关的基因过度表达,支持了它们在寒冷和禁食反应中的核心作用。除了有助于理解复杂性状(如体内能量储备管理)的遗传学基础外,我们的研究结果还首次揭示了基因表达在适应内温动物所经受的最极端环境条件中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Ecology
Molecular Ecology 生物-进化生物学
CiteScore
8.40
自引率
10.20%
发文量
472
审稿时长
1 months
期刊介绍: Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include: * population structure and phylogeography * reproductive strategies * relatedness and kin selection * sex allocation * population genetic theory * analytical methods development * conservation genetics * speciation genetics * microbial biodiversity * evolutionary dynamics of QTLs * ecological interactions * molecular adaptation and environmental genomics * impact of genetically modified organisms
期刊最新文献
Population Genetics and Invasion History of the European Starling Across Aotearoa New Zealand. An Early-Life Disruption of Gut Microbiota Has Opposing Effects on Parasite Resistance in Two Host Species. Genetic Monitoring of a Lethal Control Programme for Wild Canids With Complex Mating Strategies. Elevational Range Impacts Connectivity and Predicted Deme Sizes From Models of Habitat Suitability. Michael C. Whitlock-Recipient of the 2024 Molecular Ecology Prize.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1