Water Loss From Bagged Leaves During Storage: Why and When?

IF 6 1区 生物学 Q1 PLANT SCIENCES Plant, Cell & Environment Pub Date : 2025-02-01 Epub Date: 2024-10-13 DOI:10.1111/pce.15209
Feng Feng, Shmuel Assouline, Fulton Rockwell, Uri Hochberg
{"title":"Water Loss From Bagged Leaves During Storage: Why and When?","authors":"Feng Feng, Shmuel Assouline, Fulton Rockwell, Uri Hochberg","doi":"10.1111/pce.15209","DOIUrl":null,"url":null,"abstract":"<p><p>In ecophysiology leaves are frequently stored for hours after sampling before measuring their leaf water potential (Ψ<sub>leaf</sub>). Here, we address a previously unidentified source of error, that metabolic heat generation can cause continuous water loss from leaves stored in impermeable bags, leading to a Ψ<sub>leaf</sub> drop over time. We tested Ψ<sub>leaf</sub> drop rates under various conditions: two bag materials, two species, initial Ψ<sub>leaf</sub> above or below the turgor loss point (Ψ<sub>tlp</sub>), and storage at 25°C versus 4°C. We partitioned leaf water loss due to condensation on the inner bag surface or permeation through the bag. We found that Ψ<sub>leaf</sub> dropped by up to 0.39 MPa per hour, with 41%-89% of the water leaving the leaf condensed on the inner bag surface. Plastic bags showed higher Ψ<sub>leaf</sub> drop rates than aluminium bags, and leaves above Ψ<sub>tlp</sub> experienced greater drops. Storing leaves at 4°C reduced the Ψ<sub>leaf</sub> drop rate by 60% compared to 25°C. Leaves were 0.2-0.3°C warmer than the bags, likely due to metabolic heating. Our energy balance model suggests that water loss is lower when storing leaves at cooler temperatures, using leaves with low stomatal conductance, deflated bags, and leaves with low Ψ<sub>leaf</sub>.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":"1051-1059"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15209","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In ecophysiology leaves are frequently stored for hours after sampling before measuring their leaf water potential (Ψleaf). Here, we address a previously unidentified source of error, that metabolic heat generation can cause continuous water loss from leaves stored in impermeable bags, leading to a Ψleaf drop over time. We tested Ψleaf drop rates under various conditions: two bag materials, two species, initial Ψleaf above or below the turgor loss point (Ψtlp), and storage at 25°C versus 4°C. We partitioned leaf water loss due to condensation on the inner bag surface or permeation through the bag. We found that Ψleaf dropped by up to 0.39 MPa per hour, with 41%-89% of the water leaving the leaf condensed on the inner bag surface. Plastic bags showed higher Ψleaf drop rates than aluminium bags, and leaves above Ψtlp experienced greater drops. Storing leaves at 4°C reduced the Ψleaf drop rate by 60% compared to 25°C. Leaves were 0.2-0.3°C warmer than the bags, likely due to metabolic heating. Our energy balance model suggests that water loss is lower when storing leaves at cooler temperatures, using leaves with low stomatal conductance, deflated bags, and leaves with low Ψleaf.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
袋装树叶在储存过程中的水分流失:原因和时间?
在生态生理学中,取样后的叶片经常要存放数小时才能测量其叶片水势(Ψleaf)。在这里,我们探讨了以前未发现的误差来源,即代谢产热会导致保存在不透水袋中的叶片不断失水,从而导致Ψ叶随时间推移而下降。我们测试了Ψ叶片在不同条件下的失水率:两种袋子材料、两种物种、初始Ψ叶片高于或低于绷紧力损失点(Ψtlp)、以及在 25°C 和 4°C 下的储存条件。我们对由于在内袋表面凝结或通过袋子渗透造成的叶片失水进行了划分。我们发现,Ψleaf 每小时最多下降 0.39 兆帕,41%-89% 的叶片失水凝结在内袋表面。塑料袋的Ψ叶片下降率高于铝袋,Ψtlp 以上的叶片下降幅度更大。与 25°C 的温度相比,在 4°C 的温度下储存叶片可使Ψ叶片掉落率降低 60%。叶片的温度比袋子高 0.2-0.3°C,这可能是新陈代谢加热的结果。我们的能量平衡模型表明,在较低温度下储存叶片、使用低气孔导度叶片、瘪袋和低Ψ叶片时,水分损失较少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
期刊最新文献
Heat Stress Inhibits Pollen Development by Degrading mRNA Capping Enzyme ARCP1 and ARCP2. Multi-Omics Analysis Reveals Molecular Responses of Alkaloid Content Variations in Lycoris aurea Across Different Locations. Direct and Legacy Effects of Varying Cool-Season Precipitation Totals on Ecosystem Carbon Flux in a Semi-Arid Mixed Grassland. Growth, Morphology and Respiratory Cost Responses to Salinity in the Mangrove Plant Rhizophora Stylosa Depend on Growth Temperature. Productive Poplar Genotypes Exhibited Temporally Stable Low Stem Embolism Resistance and Hydraulic Resistance Segmentation at the Stem-Leaf Transition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1