Local Strain-Dependent Etching Patterns of Chemical Vapor Deposited Molybdenum Disulfide.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2024-10-18 DOI:10.1002/smtd.202400770
Birong Luo, Rongnan Wang, Tianxiang Zhao, Linfeng Li, Qi Chen, Pengcheng Wang, Junjia Wang, Qing Han, Ying Zhang, Bo Zhang, Dejun Li
{"title":"Local Strain-Dependent Etching Patterns of Chemical Vapor Deposited Molybdenum Disulfide.","authors":"Birong Luo, Rongnan Wang, Tianxiang Zhao, Linfeng Li, Qi Chen, Pengcheng Wang, Junjia Wang, Qing Han, Ying Zhang, Bo Zhang, Dejun Li","doi":"10.1002/smtd.202400770","DOIUrl":null,"url":null,"abstract":"<p><p>This study reveals a local strain-dependent etching behavior that enables the formation of distinguished etching patterns in differently strained chemical vapor deposited (CVD) 2D molybdenum disulfide (MoS<sub>2</sub>) monolayers. It is demonstrated that when the local tensile strain of CVD 2D MoS<sub>2</sub> is as uniformly low as ɛ ≈ 0.33% or less, the oxidative etching pattern possesses conventional triangular etching pits (TEPs), while when the local tensile strain is as uniformly high as ɛ ≈ 0.55% or larger, the oxidative etching pattern consist of uniformly oriented hexagonal etching channels (HECs). More interestingly, when the CVD 2D MoS<sub>2</sub> monolayer has heterogenous strain distribution from ɛ ≈ 0.55% (center region) to ɛ ≈ 0.33% (perimeter region), the oxidative etching pattern comprise of non-uniformly hexagonal-mixed-parallel etching channels (HPECs). The further characterization and analysis reveal the formation mechanism of such strain-dependent etching patterns is built on the local strain-related fractures propagation under oxidative etching, as well as the anisotropy fractures-based oxidative etching kinetics. This study may enhance the understanding of the relationship between etching and growth features of 2D TMDs, and paves the way to etching-nanostructured (or defect) engineering of 2D TMDs and other 2D materials for potential applications in electrocatalysis and optoelectronics.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2400770"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202400770","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study reveals a local strain-dependent etching behavior that enables the formation of distinguished etching patterns in differently strained chemical vapor deposited (CVD) 2D molybdenum disulfide (MoS2) monolayers. It is demonstrated that when the local tensile strain of CVD 2D MoS2 is as uniformly low as ɛ ≈ 0.33% or less, the oxidative etching pattern possesses conventional triangular etching pits (TEPs), while when the local tensile strain is as uniformly high as ɛ ≈ 0.55% or larger, the oxidative etching pattern consist of uniformly oriented hexagonal etching channels (HECs). More interestingly, when the CVD 2D MoS2 monolayer has heterogenous strain distribution from ɛ ≈ 0.55% (center region) to ɛ ≈ 0.33% (perimeter region), the oxidative etching pattern comprise of non-uniformly hexagonal-mixed-parallel etching channels (HPECs). The further characterization and analysis reveal the formation mechanism of such strain-dependent etching patterns is built on the local strain-related fractures propagation under oxidative etching, as well as the anisotropy fractures-based oxidative etching kinetics. This study may enhance the understanding of the relationship between etching and growth features of 2D TMDs, and paves the way to etching-nanostructured (or defect) engineering of 2D TMDs and other 2D materials for potential applications in electrocatalysis and optoelectronics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
化学气相沉积二硫化钼的局部应变蚀刻模式。
这项研究揭示了一种局部应变依赖性蚀刻行为,它能在不同应变的化学气相沉积(CVD)二维二硫化钼(MoS2)单层中形成不同的蚀刻模式。研究表明,当 CVD 二维 MoS2 的局部拉伸应变均匀低至 ɛ ≈ 0.33% 或更低时,氧化蚀刻图案具有传统的三角形蚀刻坑(TEP);而当局部拉伸应变均匀高至 ɛ ≈ 0.55% 或更高时,氧化蚀刻图案由均匀取向的六边形蚀刻通道(HEC)组成。更有趣的是,当 CVD 二维 MoS2 单层具有从ɛ ≈ 0.55% (中心区域)到ɛ ≈ 0.33% (周边区域)的异质应变分布时,氧化蚀刻图案由非均匀六边形混合平行蚀刻通道(HPECs)组成。进一步的表征和分析表明,这种应变依赖性蚀刻模式的形成机制是建立在氧化蚀刻下与应变相关的局部断裂扩展以及基于各向异性断裂的氧化蚀刻动力学基础之上的。这项研究可加深人们对二维 TMDs 蚀刻与生长特征之间关系的理解,并为二维 TMDs 和其他二维材料的蚀刻-纳米结构(或缺陷)工程铺平道路,从而在电催化和光电子学领域实现潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Circular Adhesion Substrates Inhibiting Cell Polarization and Proliferation via Graded Texture of Geometric Micropatterns. How the Kinetic Balance Between Charge-Transfer and Mass-Transfer Influences Zinc Anode Stability: An Ultramicroelectrode Study. Label-Free Prediction of Tumor Metastatic Potential via Ramanome. Tuning the Sensitivity of MoS2 Nanopores: From Labeling to Labeling-Free Detection of DNA Methylation. Interface Engineering of Network-Like 1D/2D (NHCNT/Ni─MOF) Hybrid Nanoarchitecture for Electrocatalytic Water Splitting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1