Co-Doped Hybrid Magneto-Mechano-Electric Generator for Powering Watt-Level IoT Systems.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2025-03-04 DOI:10.1002/smtd.202401666
Ha Young Lee, Srinivas Pattipaka, Sung-Dae Kim, Geon-Tae Hwang, Jongmoon Jang
{"title":"Co-Doped Hybrid Magneto-Mechano-Electric Generator for Powering Watt-Level IoT Systems.","authors":"Ha Young Lee, Srinivas Pattipaka, Sung-Dae Kim, Geon-Tae Hwang, Jongmoon Jang","doi":"10.1002/smtd.202401666","DOIUrl":null,"url":null,"abstract":"<p><p>Magneto-mechano-electric (MME) generators, which convert ambient magnetic energy into electricity, show promise as power sources for wireless Internet of Things (IoT) sensors. However, their output power remains insufficient for powering watt-level IoT applications. This study addresses this limitation by co-doping Pb(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub>-Pb(Zr,Ti)O<sub>3</sub> (PMN-PZT) piezoelectric single crystals with manganese (Mn) and lanthanum (La). The piezoelectric cantilevers are constructed using an optimized composition containing 1 mol.% Mn and 0.5 mol.% La, designed to operate d<sub>32</sub>-mode at a resonance frequency of 60 Hz. The piezoelectric cantilever is combined with an electromagnetic coil to complete the hybrid-MME (H-MME) generator, achieving a total root mean square power of 82.19 mW under a 5-Oe magnetic field. The H-MME generator successfully supplied the watt-level power-consuming smart farm system, which included a power management circuit, camera, microcontroller, and Bluetooth module, to transmit images to a smartphone at intervals of 1 h 30 min. These results demonstrate the potential of co-doped H-MME generators to drive watt-level IoT systems, enabling applications with high-energy demands.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401666"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401666","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Magneto-mechano-electric (MME) generators, which convert ambient magnetic energy into electricity, show promise as power sources for wireless Internet of Things (IoT) sensors. However, their output power remains insufficient for powering watt-level IoT applications. This study addresses this limitation by co-doping Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3 (PMN-PZT) piezoelectric single crystals with manganese (Mn) and lanthanum (La). The piezoelectric cantilevers are constructed using an optimized composition containing 1 mol.% Mn and 0.5 mol.% La, designed to operate d32-mode at a resonance frequency of 60 Hz. The piezoelectric cantilever is combined with an electromagnetic coil to complete the hybrid-MME (H-MME) generator, achieving a total root mean square power of 82.19 mW under a 5-Oe magnetic field. The H-MME generator successfully supplied the watt-level power-consuming smart farm system, which included a power management circuit, camera, microcontroller, and Bluetooth module, to transmit images to a smartphone at intervals of 1 h 30 min. These results demonstrate the potential of co-doped H-MME generators to drive watt-level IoT systems, enabling applications with high-energy demands.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Magic Defect Site for Modulating Electron-Correlated Properties in Monolayer T-NbSe2. 2D MXenes-Based Gas Sensors: Progress, Applications, and Challenges. Achieving Precision Phototherapy from Start to Finish: Integrating Endosomal Escape, Respiration Inhibition, and ROS Release in a Single Upconversion Nanoparticle. Surface Organic Nanostructures Mediated by Extrinsic Components: from Assembly to Reaction. Metal Halide Perovskite Single-Crystal Thin Films: From Films Growth to Light-Emitting Application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1