Yongtao Yu, Yongping Liao, Jiangning Fan, Yuanlong Ding, Yanzhi Fan, Jun Cao, Xinghai Zhou, Ying Wang, Jun Yan, Hong Li, Dongyan Li, Jiaqing Wu
{"title":"Tip effect of NiCo-LDH with low crystallinity for enhanced energy storage performance of yarn-shaped supercapacitors.","authors":"Yongtao Yu, Yongping Liao, Jiangning Fan, Yuanlong Ding, Yanzhi Fan, Jun Cao, Xinghai Zhou, Ying Wang, Jun Yan, Hong Li, Dongyan Li, Jiaqing Wu","doi":"10.1016/j.jcis.2024.10.064","DOIUrl":null,"url":null,"abstract":"<p><p>Layered double hydroxides (LDHs) are considered promising materials for supercapacitor applications. However, the development of yarn-shaped supercapacitors (YSCs) with high electrochemical performance utilizing LDHs remains challenging. In this study, the NiCo-LDHs with various morphologies (nano-needles, nano-sheets, needle-sheet composites, and nano-flowers) were grown on carbon nanotubes (CNTs)-functionalized cotton yarn via a co-precipitation technique for YSC applications. Among these, the yarn incorporating nano-needle NiCo-LDHs exhibited reduced crystallinity yet demonstrated a superior areal capacitance compared to other morphologies, following a diffusion-controlled process. Finite element simulations were subsequently conducted to investigate this phenomenon, revealing that the lower-crystallinity nano-needle NiCo-LDHs accumulated a greater charge at their tips, thereby enhancing redox reactions and achieving higher energy storage capacitance. Subsequently, the yarns with nano-needle NiCo-LDHs were assembled into flexible quasi-solid-state symmetric YSCs, achieving a peak areal capacitance of 124.27 mF cm<sup>-2</sup> and an exceptionally high energy density of 39.4 μWh cm<sup>-2</sup> at a current density of 0.2 mA cm<sup>-2</sup>. Furthermore, our YSCs can be scaled up through serial or parallel connections and integrated into fabrics, making them suitable for wearable energy storage applications. This work provides an efficient method for fabricating high-performance YSCs and demonstrates significant potential for wearable energy storage devices.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"679 Pt A","pages":"1242-1252"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.10.064","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Layered double hydroxides (LDHs) are considered promising materials for supercapacitor applications. However, the development of yarn-shaped supercapacitors (YSCs) with high electrochemical performance utilizing LDHs remains challenging. In this study, the NiCo-LDHs with various morphologies (nano-needles, nano-sheets, needle-sheet composites, and nano-flowers) were grown on carbon nanotubes (CNTs)-functionalized cotton yarn via a co-precipitation technique for YSC applications. Among these, the yarn incorporating nano-needle NiCo-LDHs exhibited reduced crystallinity yet demonstrated a superior areal capacitance compared to other morphologies, following a diffusion-controlled process. Finite element simulations were subsequently conducted to investigate this phenomenon, revealing that the lower-crystallinity nano-needle NiCo-LDHs accumulated a greater charge at their tips, thereby enhancing redox reactions and achieving higher energy storage capacitance. Subsequently, the yarns with nano-needle NiCo-LDHs were assembled into flexible quasi-solid-state symmetric YSCs, achieving a peak areal capacitance of 124.27 mF cm-2 and an exceptionally high energy density of 39.4 μWh cm-2 at a current density of 0.2 mA cm-2. Furthermore, our YSCs can be scaled up through serial or parallel connections and integrated into fabrics, making them suitable for wearable energy storage applications. This work provides an efficient method for fabricating high-performance YSCs and demonstrates significant potential for wearable energy storage devices.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies