Efficient activation of peroxymonosulfate by Mo2TiC2Tx@Co for sustained emerging micropollutant removal: Mo vacancy-mediated activation in Fenton-like reactions.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-04-15 Epub Date: 2024-12-31 DOI:10.1016/j.jcis.2024.12.233
Siling Zhang, Dezhu Liu, Zili Lin, Ping Chen, Yishun Wang, Linsheng Liu, Zihong Xu, Junle Jian, Wenying Lv, Guoguang Liu
{"title":"Efficient activation of peroxymonosulfate by Mo<sub>2</sub>TiC<sub>2</sub>T<sub>x</sub>@Co for sustained emerging micropollutant removal: Mo vacancy-mediated activation in Fenton-like reactions.","authors":"Siling Zhang, Dezhu Liu, Zili Lin, Ping Chen, Yishun Wang, Linsheng Liu, Zihong Xu, Junle Jian, Wenying Lv, Guoguang Liu","doi":"10.1016/j.jcis.2024.12.233","DOIUrl":null,"url":null,"abstract":"<p><p>Developing advanced heterogeneous catalysts through structural modifications effectively enhances the catalytic activity of non-homogeneous catalysts for removing emerging micropollutants (EMPs). In this study, Mo<sub>2</sub>TiC<sub>2</sub>T<sub>x</sub>@Co with Mo vacancies was synthesized using the Lewis molten salt method, which efficiently activates peroxymonosulfate (PMS) and continuously degrades EMPs in water. The abundant Mo vacancy structure in the material acts as an anchoring site for Co nanoparticles and a co-catalytic site for Fenton-like reactions, enabling PMS adsorption and activation. Furthermore, Mo facilitates the redox cycling of Co<sup>3+</sup>/Co<sup>2+</sup> through electron transfer. Mo vacancy-mediated activation in Fenton-like reactions enabled the Mo<sub>2</sub>TiC<sub>2</sub>T<sub>x</sub>@Co/PMS system to achieve superior degradation efficiency for sulfamethoxazole (SMX) and several other EMPs, with the SMX degradation rate being 52.7 times higher than that of the Mo<sub>2</sub>TiAlC<sub>2</sub>/PMS system. The system exhibited robust resistance to various anionic species and maintained high activity over a wide pH range. The Mo<sub>2</sub>TiC<sub>2</sub>T<sub>x</sub>@Co /PMS system degrades EMPs in water through both free radical (SO<sub>4</sub><sup>•-</sup> and •OH) and non-radical (<sup>1</sup>O<sub>2</sub>) mechanisms, enhancing EMPs removal from complex water environments. This study aims to develop an efficient and sustainable heterogeneous catalyst, offering a viable solution for the long-term and effective degradation of EMPs in water.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"684 Pt 1","pages":"60-74"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.233","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Developing advanced heterogeneous catalysts through structural modifications effectively enhances the catalytic activity of non-homogeneous catalysts for removing emerging micropollutants (EMPs). In this study, Mo2TiC2Tx@Co with Mo vacancies was synthesized using the Lewis molten salt method, which efficiently activates peroxymonosulfate (PMS) and continuously degrades EMPs in water. The abundant Mo vacancy structure in the material acts as an anchoring site for Co nanoparticles and a co-catalytic site for Fenton-like reactions, enabling PMS adsorption and activation. Furthermore, Mo facilitates the redox cycling of Co3+/Co2+ through electron transfer. Mo vacancy-mediated activation in Fenton-like reactions enabled the Mo2TiC2Tx@Co/PMS system to achieve superior degradation efficiency for sulfamethoxazole (SMX) and several other EMPs, with the SMX degradation rate being 52.7 times higher than that of the Mo2TiAlC2/PMS system. The system exhibited robust resistance to various anionic species and maintained high activity over a wide pH range. The Mo2TiC2Tx@Co /PMS system degrades EMPs in water through both free radical (SO4•- and •OH) and non-radical (1O2) mechanisms, enhancing EMPs removal from complex water environments. This study aims to develop an efficient and sustainable heterogeneous catalyst, offering a viable solution for the long-term and effective degradation of EMPs in water.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过Mo2TiC2Tx@Co有效激活过氧单硫酸盐以持续去除新兴微污染物:fenton样反应中Mo空位介导的激活。
通过结构修饰开发先进的非均相催化剂,有效地提高了非均相催化剂去除新兴微污染物的催化活性。本研究采用Lewis熔盐法合成了含有Mo空位的Mo2TiC2Tx@Co,该材料能有效地激活过氧单硫酸盐(PMS)并持续降解水中的emp。材料中丰富的Mo空位结构作为Co纳米颗粒的锚定位点和类芬顿反应的共催化位点,使PMS吸附和活化成为可能。此外,Mo通过电子转移促进Co3+/Co2+的氧化还原循环。在fenton样反应中,Mo空位介导的活化使得Mo2TiC2Tx@Co/PMS体系对磺胺甲恶唑(SMX)和其他几种EMPs具有优异的降解效率,SMX的降解率是Mo2TiAlC2/PMS体系的52.7倍。该体系对多种阴离子具有较强的抗性,并在较宽的pH范围内保持较高的活性。Mo2TiC2Tx@Co /PMS系统通过自由基(SO4•-和•OH)和非自由基(1O2)两种机制降解水中的EMPs,增强了复杂水环境中EMPs的去除能力。本研究旨在开发一种高效、可持续的多相催化剂,为水中EMPs的长期有效降解提供可行的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Efficient activation of peroxymonosulfate by Mo2TiC2Tx@Co for sustained emerging micropollutant removal: Mo vacancy-mediated activation in Fenton-like reactions. High-entropy NASICON-Type Li1.3Al0.4Ti0.5Zr0.5Sn0.5Ta0.1(PO4)3 with high electrochemical stability for lithium-ion batteries. Using reduced sericin as a green resist for precise pattern fabrication via water-based lithography. Atomically dispersed rare earth dysprosium-nitrogen-carbon for boosting oxygen reduction reaction. Liquid nitrogen quenching for efficient Bifunctional electrocatalysts in water Splitting: Achieving four key objectives in one step.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1