{"title":"Citrate ions-modified NiFe layered double hydroxide for durable alkaline seawater oxidation","authors":"","doi":"10.1016/j.jcis.2024.10.086","DOIUrl":null,"url":null,"abstract":"<div><div>Seawater electrolysis taking advantage of coastal/offshore areas is acknowledged as a potential way of large-scale producing H<sub>2</sub> to substitute traditional technology. However, anodic catalysts with high overpotentials and limited lifespans (caused by chloride-induced competitive chemical reactions) hinder the system of seawater electrolysis for H<sub>2</sub> production. Herein, we present a citrate anion (CA) modified NiFe layered double hydroxide nanosheet array on nickel foam (NiFe LDH@NiFe-CA/NF), which serves as an efficient and stable electrocatalyst towards long-term alkaline seawater oxidation. It requires only a low overpotential of 387 mV to achieve a current density of 1000 mA cm<sup>−2</sup>, outperforming NiFe LDH/NF (414 mV). Moreover, NiFe LDH@NiFe-CA/NF exhibits continuous oxygen evolution testing for 300 h at 1000 mA cm<sup>−2</sup> due to its anti-corrosion characterization. Additionally, the fabricated cell can stably operate at 300 mA cm<sup>−2</sup> (60 °C, 6 M KOH + seawater) and only require 1.69 V, achieving low energy consumption of seawater splitting.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724024160","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Seawater electrolysis taking advantage of coastal/offshore areas is acknowledged as a potential way of large-scale producing H2 to substitute traditional technology. However, anodic catalysts with high overpotentials and limited lifespans (caused by chloride-induced competitive chemical reactions) hinder the system of seawater electrolysis for H2 production. Herein, we present a citrate anion (CA) modified NiFe layered double hydroxide nanosheet array on nickel foam (NiFe LDH@NiFe-CA/NF), which serves as an efficient and stable electrocatalyst towards long-term alkaline seawater oxidation. It requires only a low overpotential of 387 mV to achieve a current density of 1000 mA cm−2, outperforming NiFe LDH/NF (414 mV). Moreover, NiFe LDH@NiFe-CA/NF exhibits continuous oxygen evolution testing for 300 h at 1000 mA cm−2 due to its anti-corrosion characterization. Additionally, the fabricated cell can stably operate at 300 mA cm−2 (60 °C, 6 M KOH + seawater) and only require 1.69 V, achieving low energy consumption of seawater splitting.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies