Investigation of the agricultural reuse potential of urban wastewater and other resources derived by using membrane bioreactor technology within the circular economy framework.
Laura Antiñolo Bermúdez, Verónica Díaz Mendoza, Juan Carlos Leyva Díaz, Jaime Martín Pascual, María Del Mar Muñio Martínez, Jose Manuel Poyatos Capilla
{"title":"Investigation of the agricultural reuse potential of urban wastewater and other resources derived by using membrane bioreactor technology within the circular economy framework.","authors":"Laura Antiñolo Bermúdez, Verónica Díaz Mendoza, Juan Carlos Leyva Díaz, Jaime Martín Pascual, María Del Mar Muñio Martínez, Jose Manuel Poyatos Capilla","doi":"10.1016/j.scitotenv.2024.177011","DOIUrl":null,"url":null,"abstract":"<p><p>The European Union, as delineated in Regulation (EU) 2020/741, sets forth minimum criteria for the reuse of wastewater. Directive 86/278/CEE sets the regulations for the reuse of sewage sludge in agriculture. This study aimed to investigate the treated water derived from a pilot plant situated in Granada, Spain, that utilizes membrane bioreactor technology to process real urban wastewater with the quality standards necessary for agricultural reuse. Additionally, the study evaluated the utilization potential of other resources generated during wastewater treatment, including biogas and biostabilized sludge. The pilot plant incorporated a membrane bioreactor featuring four ultrafiltration membranes operating continuously alongside a sludge treatment line operating in batch mode. The pilot plant operated during four cycles, each with distinct hydraulic retention times (6 h and 12 h) and variable mixed liquor-suspended solids concentrations (ranging from 2688 mg L<sup>-1</sup> to 7542 mg L<sup>-1</sup>). During these cycles, the plant was doped with increasing concentrations of emerging contamination compounds (diclofenac, ibuprofen, and erythromycin) to test their effect on the resources derived from the treatment. Subsequently, a tertiary treatment involving an advanced oxidation process was applied to the different water lines, which left the wastewater treatment plant for a period of 30 min and utilized varying concentrations of oxidant. The results indicate that the effluent obtained meets the required quality standards for agricultural use. Therefore, there is potential to use this waste as a resource, which is in line with the principles of the circular economy. Furthermore, the other resources generated during the treatment process, such as the biogas produced during the digestion process and the biostabilized sludge, have the potential to be used as resources according to the circular economy indicators.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"177011"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177011","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The European Union, as delineated in Regulation (EU) 2020/741, sets forth minimum criteria for the reuse of wastewater. Directive 86/278/CEE sets the regulations for the reuse of sewage sludge in agriculture. This study aimed to investigate the treated water derived from a pilot plant situated in Granada, Spain, that utilizes membrane bioreactor technology to process real urban wastewater with the quality standards necessary for agricultural reuse. Additionally, the study evaluated the utilization potential of other resources generated during wastewater treatment, including biogas and biostabilized sludge. The pilot plant incorporated a membrane bioreactor featuring four ultrafiltration membranes operating continuously alongside a sludge treatment line operating in batch mode. The pilot plant operated during four cycles, each with distinct hydraulic retention times (6 h and 12 h) and variable mixed liquor-suspended solids concentrations (ranging from 2688 mg L-1 to 7542 mg L-1). During these cycles, the plant was doped with increasing concentrations of emerging contamination compounds (diclofenac, ibuprofen, and erythromycin) to test their effect on the resources derived from the treatment. Subsequently, a tertiary treatment involving an advanced oxidation process was applied to the different water lines, which left the wastewater treatment plant for a period of 30 min and utilized varying concentrations of oxidant. The results indicate that the effluent obtained meets the required quality standards for agricultural use. Therefore, there is potential to use this waste as a resource, which is in line with the principles of the circular economy. Furthermore, the other resources generated during the treatment process, such as the biogas produced during the digestion process and the biostabilized sludge, have the potential to be used as resources according to the circular economy indicators.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.