Maria D Tokhtueva, Vsevolod V Melekhin, Vladislav M Abramov, Alexander I Ponomarev, Anna V Prokofyeva, Kirill V Grzhegorzhevskii, Anastasia V Paramonova, Oleg G Makeev, Oleg S Eltsov
{"title":"The arylbipyridine platinum (II) complex increases the level of ROS and induces lipid peroxidation in glioblastoma cells.","authors":"Maria D Tokhtueva, Vsevolod V Melekhin, Vladislav M Abramov, Alexander I Ponomarev, Anna V Prokofyeva, Kirill V Grzhegorzhevskii, Anastasia V Paramonova, Oleg G Makeev, Oleg S Eltsov","doi":"10.1007/s10534-024-00646-6","DOIUrl":null,"url":null,"abstract":"<p><p>Here we present the biological properties of the arylbipyridine platinum (II) complex (arylbipy-Pt) and describe the potential mechanism of its antitumor action which differs from that of the well-known cisplatin. Leading to the oxidative stress and lipid peroxidation, the arylbipyridine platinum (II) complex showcases the significant cytotoxicity against the glioblastoma cells as shown by the MTT test. Using the 5-ethyl-2-deoxyuridine we study the proliferative activity of glioblastoma cells to affirm that arylbipyridine platinum (II) complex does not impede cell division or DNA replication. Staining by the MitoCLox dye and 2',7'-dichlorodihydrofluorescein diacetate demonstrates that the glioblastoma cells treated with arylbipy-Pt exhibit a strong increase of the lipid peroxidation and the stimulation of the reactive oxygen species formation. The hypothesis that arylbipy-Pt promotes oxidative death of tumor cells is confirmed by control experiments using N-acetyl-L-cysteine as an antioxidant. Further evidence for the oxidative mechanism of action is provided by real-time PCR, which shows high expression levels for genes associated with the heat shock proteins HSP27 and HSP70, which can be used as markers of tumor cell ferroptosis. To elucidate the chemical nature of the arylbipy-Pt complex activity, we perform <sup>195</sup>Pt NMR spectroscopy and cyclic voltammetry measurements under biologically relevant conditions. The results obtained clearly indicate the structural transformation of the arylbipy-Pt complex in the DMSO-saline mixture, which is crucial for its further antitumor activity via the oxidative pathway. The found correlation between the molecular structure of arylbipy-Pt and its effect on the tumor cell cycle paves the way for the rational design of Pt complexes possessing the alternative mechanism of antitumor activity as compared to DNA intercalation, providing possible solutions to the major problems such as toxicity and drug resistance.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10534-024-00646-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Here we present the biological properties of the arylbipyridine platinum (II) complex (arylbipy-Pt) and describe the potential mechanism of its antitumor action which differs from that of the well-known cisplatin. Leading to the oxidative stress and lipid peroxidation, the arylbipyridine platinum (II) complex showcases the significant cytotoxicity against the glioblastoma cells as shown by the MTT test. Using the 5-ethyl-2-deoxyuridine we study the proliferative activity of glioblastoma cells to affirm that arylbipyridine platinum (II) complex does not impede cell division or DNA replication. Staining by the MitoCLox dye and 2',7'-dichlorodihydrofluorescein diacetate demonstrates that the glioblastoma cells treated with arylbipy-Pt exhibit a strong increase of the lipid peroxidation and the stimulation of the reactive oxygen species formation. The hypothesis that arylbipy-Pt promotes oxidative death of tumor cells is confirmed by control experiments using N-acetyl-L-cysteine as an antioxidant. Further evidence for the oxidative mechanism of action is provided by real-time PCR, which shows high expression levels for genes associated with the heat shock proteins HSP27 and HSP70, which can be used as markers of tumor cell ferroptosis. To elucidate the chemical nature of the arylbipy-Pt complex activity, we perform 195Pt NMR spectroscopy and cyclic voltammetry measurements under biologically relevant conditions. The results obtained clearly indicate the structural transformation of the arylbipy-Pt complex in the DMSO-saline mixture, which is crucial for its further antitumor activity via the oxidative pathway. The found correlation between the molecular structure of arylbipy-Pt and its effect on the tumor cell cycle paves the way for the rational design of Pt complexes possessing the alternative mechanism of antitumor activity as compared to DNA intercalation, providing possible solutions to the major problems such as toxicity and drug resistance.
期刊介绍:
BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of:
- metal ions
- metal chelates,
- siderophores,
- metal-containing proteins
- biominerals in all biosystems.
- BioMetals rapidly publishes original articles and reviews.
BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.