Kai Zhang, Yule Qian, Chaoyan Lou, Mingli Ye, Yan Zhu
{"title":"PyICLab: An integrated Python-based toolkit for in-silico simulations of ion chromatography.","authors":"Kai Zhang, Yule Qian, Chaoyan Lou, Mingli Ye, Yan Zhu","doi":"10.1016/j.talanta.2024.127054","DOIUrl":null,"url":null,"abstract":"<p><p>PyICLab is an open-source Python-based package featuring an object-oriented programming (OOP) interface, providing tools for realistic and customized numerical simulations of ion chromatography (IC). In this paper, we showcase PyICLab's use in simulating diverse separation scenarios, including isocratic carbonate elution, gradient hydroxide elution, high-concentration and large-volume injections. The accuracy of the embedded models was validated by demonstrating strong correlations between predicted and experimental results. Additionally, PyICLab's capability to handle complex IC configurations was demonstrated through a simulation of a column-switching system for seawater analysis. PyICLab offers valuable resources for chromatographic optimization, method development, and educational purposes. It is available on PyPI at pypi.org/project/pyIClab. Interested readers can install PyICLab using the pip command in a Python 3.11 or higher environment.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"282 ","pages":"127054"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.127054","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
PyICLab is an open-source Python-based package featuring an object-oriented programming (OOP) interface, providing tools for realistic and customized numerical simulations of ion chromatography (IC). In this paper, we showcase PyICLab's use in simulating diverse separation scenarios, including isocratic carbonate elution, gradient hydroxide elution, high-concentration and large-volume injections. The accuracy of the embedded models was validated by demonstrating strong correlations between predicted and experimental results. Additionally, PyICLab's capability to handle complex IC configurations was demonstrated through a simulation of a column-switching system for seawater analysis. PyICLab offers valuable resources for chromatographic optimization, method development, and educational purposes. It is available on PyPI at pypi.org/project/pyIClab. Interested readers can install PyICLab using the pip command in a Python 3.11 or higher environment.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.