β-Sitosterol Mitigates Apoptosis, Oxidative Stress and Inflammatory Response by Inactivating TLR4/NF-кB Pathway in Cell Models of Diabetic Nephropathy.

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Biochemistry and Biophysics Pub Date : 2024-10-19 DOI:10.1007/s12013-024-01559-4
Shengnan Yang, Yun Zhang, Chenghong Zheng
{"title":"β-Sitosterol Mitigates Apoptosis, Oxidative Stress and Inflammatory Response by Inactivating TLR4/NF-кB Pathway in Cell Models of Diabetic Nephropathy.","authors":"Shengnan Yang, Yun Zhang, Chenghong Zheng","doi":"10.1007/s12013-024-01559-4","DOIUrl":null,"url":null,"abstract":"<p><p>Podocyte injury plays a pivotal role in the pathogenesis of diabetic nephropathy (DN), leading to proteinuria formation. β-Sitosterol is a natural compound with anti-inflammatory, anti-diabetic, nephroprotective and antioxidant properties. The studyaimed to explore whether and how β-Sitosterol protected podocytes against high glucose (HG)-induced inflammatory andoxidative injury. DN cell models were established by stimulating podocytes or renal tubular epithelial cells (HK-2) cells with 25 mM glucose. Cell viability and apoptosis were evaluated using cell counting kit-8 assays and flow cytometry analyses. Westernblotting was used to quantify protein levels of genes related to podocyte injury, HK-2 cell damage, inflammation, and TLR4/NF-кB pathway. Contents of oxidative stress biomarkers were evaluated by corresponding commercial kits while proinflammatorycytokine levels were determined by enzyme-linked immunosorbent assay. Immunofluorescence staining was performed todetect intracellular levels of reactive oxygen species (ROS) and Nrf2 nuclear translocation. Experimental results revealed that HG treatment induced podocyte dysfunction by impairing cell viability while accelerating theapoptosis, and the changes were reversed by β-sitosterol treatment. Moreover, β-sitosterol repressed HG-evoked oxidative stressby reducing ROS and malondialdehyde (MDA) levels while increasing activities of antioxidant enzymes. The reduction ofproinflammatory cytokines mediated by β-sitosterol in HG-stimulated podocytes suggested the anti-inflammatory role of β-sitosterol. Additionally, the activation of the TLR4/NF-кB signaling induced by HG was inhibited by β-sitosterol in podocytes.Inactivation of the TLR4 using TAK-242 enhanced the protective effects of β-sitosterol against HG-mediated oxidative stressand inflammation. Similarly, β-sitosterol also protected HK-2 cells from HG-induced oxidative stress, inflammation, andapoptosis. In summary, β-sitosterol exerts anti-inflammatory, anti-oxidative, and anti-apoptotic activities in HG-induced podocytes or HK-2 cells by inhibiting TLR4/NF-кB signaling.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01559-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Podocyte injury plays a pivotal role in the pathogenesis of diabetic nephropathy (DN), leading to proteinuria formation. β-Sitosterol is a natural compound with anti-inflammatory, anti-diabetic, nephroprotective and antioxidant properties. The studyaimed to explore whether and how β-Sitosterol protected podocytes against high glucose (HG)-induced inflammatory andoxidative injury. DN cell models were established by stimulating podocytes or renal tubular epithelial cells (HK-2) cells with 25 mM glucose. Cell viability and apoptosis were evaluated using cell counting kit-8 assays and flow cytometry analyses. Westernblotting was used to quantify protein levels of genes related to podocyte injury, HK-2 cell damage, inflammation, and TLR4/NF-кB pathway. Contents of oxidative stress biomarkers were evaluated by corresponding commercial kits while proinflammatorycytokine levels were determined by enzyme-linked immunosorbent assay. Immunofluorescence staining was performed todetect intracellular levels of reactive oxygen species (ROS) and Nrf2 nuclear translocation. Experimental results revealed that HG treatment induced podocyte dysfunction by impairing cell viability while accelerating theapoptosis, and the changes were reversed by β-sitosterol treatment. Moreover, β-sitosterol repressed HG-evoked oxidative stressby reducing ROS and malondialdehyde (MDA) levels while increasing activities of antioxidant enzymes. The reduction ofproinflammatory cytokines mediated by β-sitosterol in HG-stimulated podocytes suggested the anti-inflammatory role of β-sitosterol. Additionally, the activation of the TLR4/NF-кB signaling induced by HG was inhibited by β-sitosterol in podocytes.Inactivation of the TLR4 using TAK-242 enhanced the protective effects of β-sitosterol against HG-mediated oxidative stressand inflammation. Similarly, β-sitosterol also protected HK-2 cells from HG-induced oxidative stress, inflammation, andapoptosis. In summary, β-sitosterol exerts anti-inflammatory, anti-oxidative, and anti-apoptotic activities in HG-induced podocytes or HK-2 cells by inhibiting TLR4/NF-кB signaling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
β-谷甾醇通过抑制 TLR4/NF-кB 通路减轻糖尿病肾病细胞模型中的细胞凋亡、氧化应激和炎症反应
在糖尿病肾病(DN)的发病机制中,荚膜细胞损伤是导致蛋白尿形成的关键因素。β-谷甾醇是一种天然化合物,具有抗炎、抗糖尿病、保护肾脏和抗氧化的作用。该研究旨在探讨β-谷甾醇是否以及如何保护荚膜细胞免受高葡萄糖(HG)诱导的炎症和氧化损伤。通过用 25 mM 葡萄糖刺激荚膜细胞或肾小管上皮细胞(HK-2)建立了 DN 细胞模型。使用细胞计数试剂盒-8测定法和流式细胞术分析评估细胞活力和凋亡。使用 Westernblotting 定量与荚膜损伤、HK-2 细胞损伤、炎症和 TLR4/NF-кB 通路相关的基因的蛋白水平。氧化应激生物标志物的含量通过相应的商业试剂盒进行评估,而促炎细胞因子的水平则通过酶联免疫吸附试验进行测定。免疫荧光染色检测细胞内活性氧(ROS)水平和 Nrf2 核转位。实验结果表明,HG 处理会损害细胞活力并加速其凋亡,从而诱导荚膜细胞功能障碍,β-谷甾醇处理可逆转这些变化。此外,β-谷甾醇还能降低 ROS 和丙二醛(MDA)水平,同时提高抗氧化酶的活性,从而抑制 HG 诱导的氧化应激。在 HG 刺激的荚膜细胞中,β-谷甾醇介导的促炎细胞因子的减少表明了β-谷甾醇的抗炎作用。此外,β-谷甾醇还能抑制 HG 诱导的 TLR4/NF-кB 信号传导。使用 TAK-242 使 TLR4 失活,可增强β-谷甾醇对 HG 介导的氧化应激和炎症的保护作用。同样,β-谷甾醇也能保护 HK-2 细胞免受 HG 诱导的氧化应激、炎症和细胞凋亡的影响。总之,β-谷甾醇通过抑制 TLR4/NF-кB 信号传导,在 HG 诱导的荚膜或 HK-2 细胞中发挥抗炎、抗氧化和抗凋亡活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
期刊最新文献
Iron Overloading Potentiates the Antitumor Activity of 5-Fluorouracil by Promoting Apoptosis and Ferroptosis in Colorectal Cancer Cells. Navigating the Fractional Calcium Dynamics of Orai Mechanism in Polar Dimensions. BAG3 Mediated Down-regulation in Expression of p66shc has Ramifications on Cellular Proliferation, Apoptosis and Metastasis. Rutin Ameliorates Inflammation and Oxidative Stress in Ulcerative Colitis by Inhibiting NLRP3 Inflammasome Signaling Pathway. Study on the Role of EPHB6 in Inhibiting the Malignant Progression of Cervical Cancer C33A Cells by Binding to CBX7.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1