Machine learning models to identify lead compound and substitution optimization to have derived energetics and conformational stability through docking and MD simulations for sphingosine kinase 1.
{"title":"Machine learning models to identify lead compound and substitution optimization to have derived energetics and conformational stability through docking and MD simulations for sphingosine kinase 1.","authors":"Anantha Krishnan Dhanabalan, Velmurugan Devadasan, Jebiti Haribabu, Gunasekaran Krishnasamy","doi":"10.1007/s11030-024-10997-4","DOIUrl":null,"url":null,"abstract":"<p><p>Sphingosine kinases (SphKs) are a group of important enzymes that circulate at low micromolar concentrations in mammals and have received considerable attention due to the roles they play in a broad array of biological processes including apoptosis, mutagenesis, lymphocyte migration, radio- and chemo-sensitization, and angiogenesis. In the present study, we constructed three classification models by four machine learning (ML) algorithms including naive bayes (NB), support vector machine (SVM), logistic regression, and random forest from 395 compounds. The generated ML models were validated by fivefold cross validation. Five different scaffold hit fragments resulted from SVM model-based virtual screening and docking results indicate that all the five fragments exhibit common hydrogen bond interaction a catalytic residue of SphK1. Further, molecular dynamics (MD) simulations and binding free energy calculation had been carried out with the identified five fragment leads and three cocrystal inhibitors. The best 15 fragments were selected. Molecular dynamics (MD) simulations showed that among these compounds, 7 compounds have favorable binding energy compared with cocrystal inhibitors. Hence, the study showed that the present lead fragments could act as potential inhibitors against therapeutic target of cancers and neurodegenerative disorders.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-10997-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Sphingosine kinases (SphKs) are a group of important enzymes that circulate at low micromolar concentrations in mammals and have received considerable attention due to the roles they play in a broad array of biological processes including apoptosis, mutagenesis, lymphocyte migration, radio- and chemo-sensitization, and angiogenesis. In the present study, we constructed three classification models by four machine learning (ML) algorithms including naive bayes (NB), support vector machine (SVM), logistic regression, and random forest from 395 compounds. The generated ML models were validated by fivefold cross validation. Five different scaffold hit fragments resulted from SVM model-based virtual screening and docking results indicate that all the five fragments exhibit common hydrogen bond interaction a catalytic residue of SphK1. Further, molecular dynamics (MD) simulations and binding free energy calculation had been carried out with the identified five fragment leads and three cocrystal inhibitors. The best 15 fragments were selected. Molecular dynamics (MD) simulations showed that among these compounds, 7 compounds have favorable binding energy compared with cocrystal inhibitors. Hence, the study showed that the present lead fragments could act as potential inhibitors against therapeutic target of cancers and neurodegenerative disorders.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;