Valencene as a novel potential downregulator of THRB in NSCLC: network pharmacology, molecular docking, molecular dynamics simulation, ADMET analysis, and in vitro analysis.
{"title":"Valencene as a novel potential downregulator of THRB in NSCLC: network pharmacology, molecular docking, molecular dynamics simulation, ADMET analysis, and in vitro analysis.","authors":"Janmejay Pant, Lovedeep Singh, Payal Mittal, Nitish Kumar","doi":"10.1007/s11030-024-11008-2","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the molecular targets and pathways affected by valencene in non-small cell lung cancer (NSCLC) through network pharmacology and in vitro assays. Valencene's chemical structure was sourced from PubChem, and target identification utilized the PharmMapper database, cross-referenced with UniProtKB for official gene symbols. NSCLC-associated targets were identified via GeneCards, followed by protein-protein interaction analysis using STRING. Molecular docking studies employed AutoDock Vina to assess binding interactions with key nuclear receptors (RXRA, RXRB, RARA, RARB, THRB). Molecular dynamics simulations were conducted in GROMACS over 200 ns, while ADME/T properties were evaluated using Protox. In vitro assays measured cell viability in A549 and HEL 299 cells via MTT assays, assessed apoptosis through Hoechst staining, and evaluated mitochondrial potential with JC-1. Molecular docking revealed strong binding affinities of valencene (below - 5 kcal/mol) to nuclear receptors, outperforming 5-fluorouracil (5-FU). Molecular dynamics simulations indicated robust structural stability of the THRB-valencene complex, with favorable interaction energies. Notably, valencene exhibited a selectivity index of 2.293, higher than 5-FU's 2.231, suggesting enhanced safety for normal cells (HEL 299). Fluorescence microscopy confirmed dose-dependent DNA fragmentation and decreased mitochondrial membrane potential. These findings underscore valencene's potential as an effective therapeutic agent for lung cancer, demonstrating an IC<sub>50</sub> of 16.71 μg/ml in A549 cells compared to 5-FU's 12.7 μg/ml, warranting further investigation in preclinical models and eventual clinical trials.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11008-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the molecular targets and pathways affected by valencene in non-small cell lung cancer (NSCLC) through network pharmacology and in vitro assays. Valencene's chemical structure was sourced from PubChem, and target identification utilized the PharmMapper database, cross-referenced with UniProtKB for official gene symbols. NSCLC-associated targets were identified via GeneCards, followed by protein-protein interaction analysis using STRING. Molecular docking studies employed AutoDock Vina to assess binding interactions with key nuclear receptors (RXRA, RXRB, RARA, RARB, THRB). Molecular dynamics simulations were conducted in GROMACS over 200 ns, while ADME/T properties were evaluated using Protox. In vitro assays measured cell viability in A549 and HEL 299 cells via MTT assays, assessed apoptosis through Hoechst staining, and evaluated mitochondrial potential with JC-1. Molecular docking revealed strong binding affinities of valencene (below - 5 kcal/mol) to nuclear receptors, outperforming 5-fluorouracil (5-FU). Molecular dynamics simulations indicated robust structural stability of the THRB-valencene complex, with favorable interaction energies. Notably, valencene exhibited a selectivity index of 2.293, higher than 5-FU's 2.231, suggesting enhanced safety for normal cells (HEL 299). Fluorescence microscopy confirmed dose-dependent DNA fragmentation and decreased mitochondrial membrane potential. These findings underscore valencene's potential as an effective therapeutic agent for lung cancer, demonstrating an IC50 of 16.71 μg/ml in A549 cells compared to 5-FU's 12.7 μg/ml, warranting further investigation in preclinical models and eventual clinical trials.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;