Thaynara Lorenzoni Entringer, José Maria Rodrigues da Luz, Tomás Gomes Reis Veloso, Lucas Louzada Pereira, Karen Mirella Souza Menezes, Dério Brioschi Júnior, Maria Catarina Megumi Kasuya, Marliane de Cássia Soares da Silva
{"title":"Genetic diversity of the fungal community that contributes to the sensory quality of coffee beverage after carbonic maceration and fermentation.","authors":"Thaynara Lorenzoni Entringer, José Maria Rodrigues da Luz, Tomás Gomes Reis Veloso, Lucas Louzada Pereira, Karen Mirella Souza Menezes, Dério Brioschi Júnior, Maria Catarina Megumi Kasuya, Marliane de Cássia Soares da Silva","doi":"10.1007/s13205-024-04099-z","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the effects of microorganisms on coffee fermentation is crucial to ensure sensory quality and food security. The analysis of the dynamics of the microbial community during fermentation can contribute to a better understanding of the beneficial and harmful effects of microorganisms and help select starter cultures to improve coffee quality. Furthermore, the anaerobic environment produced by carbonic maceration of the coffee fruits inhibits aerobic respiratory processes and stimulates fermentative metabolism, modulating the microbial community during coffee fermentation. This study evaluated the effects of carbonic maceration in the fungal community dynamics during the fermentation of <i>Coffea arabica</i> fruits at 18, 28, and 38 °C for 24, 48, 72, 96, and 120 h. Fungal diversity was accompanied by high-throughput sequencing (NGS) of the Internal Transcribed Spacer (ITS) region. During the coffee fermentation, the fungal community changed over time, with the most significant changes occurring at 18 and 28 °C after 72 h. However, at 38 °C, there were greater variations in fungal composition and fungal diversity was highest after 120 h. The yeast <i>Pichia cephalocereana</i> was predominant in the fermentations. These results indicated that temperature and fermentation conditions influence the fungal community during coffee fermentation. Lower temperatures might favor a more stable microbial environment, while higher temperatures lead to more intense changes. Thus, our data from NGS can help in the identification, isolation, and metabolic characterization of fungi for the fermentation of coffee fruits.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"14 11","pages":"272"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490598/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04099-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the effects of microorganisms on coffee fermentation is crucial to ensure sensory quality and food security. The analysis of the dynamics of the microbial community during fermentation can contribute to a better understanding of the beneficial and harmful effects of microorganisms and help select starter cultures to improve coffee quality. Furthermore, the anaerobic environment produced by carbonic maceration of the coffee fruits inhibits aerobic respiratory processes and stimulates fermentative metabolism, modulating the microbial community during coffee fermentation. This study evaluated the effects of carbonic maceration in the fungal community dynamics during the fermentation of Coffea arabica fruits at 18, 28, and 38 °C for 24, 48, 72, 96, and 120 h. Fungal diversity was accompanied by high-throughput sequencing (NGS) of the Internal Transcribed Spacer (ITS) region. During the coffee fermentation, the fungal community changed over time, with the most significant changes occurring at 18 and 28 °C after 72 h. However, at 38 °C, there were greater variations in fungal composition and fungal diversity was highest after 120 h. The yeast Pichia cephalocereana was predominant in the fermentations. These results indicated that temperature and fermentation conditions influence the fungal community during coffee fermentation. Lower temperatures might favor a more stable microbial environment, while higher temperatures lead to more intense changes. Thus, our data from NGS can help in the identification, isolation, and metabolic characterization of fungi for the fermentation of coffee fruits.
3 BiotechAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.