{"title":"Calycosin-7-O-β-D-Glucoside Ameliorates Palmitate-Induced Lipid Accumulation in HT22 Cells.","authors":"Yanming Xu, Dalong Li, Ao Xue, Jiaming Gu, Yifan Ren, Siyu Zhu, Xia Lei, Jianxin Liu, Jihui Zhao, Fang Geng, Ning Zhang","doi":"10.62641/aep.v52i5.1723","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The pathogenesis of Alzheimer's disease (AD) is complex. Recent research suggests that AD patients have early disorders in brain cholesterol metabolism. Cholesterol and its derivatives accumulate in neurons, leading to p-Tau overproduction and synaptic dysfunction, initiating AD progression. Calycosin-7-O-β-D-glucoside (CG), a distinctive constituent of Astragali Radix, holds a representative position. Many clinical trials have demonstrated that CG can attenuate cerebral ischemia/reperfusion injury and preserve the structural integrity of the blood-brain barrier. However, whether CG alleviates tau-mediated neurodegeneration by increasing cholesterol efflux after lipid accumulation remains unexplored.</p><p><strong>Methods: </strong>Ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) and multivariate data analysis were employed to investigate metabolic changes in HT22 cells induced by sodium palmitate following 24 hours of CG treatment. The potential therapeutic mechanisms of CG on AD were further examined through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis.</p><p><strong>Results: </strong>Metabolomic analysis characterized 24 potential biomarkers, revealing that CG could ameliorate cholesterol metabolic pathways. The results of cell experiments revealed that CG can increase the expression of enzyme cholesterol 24-hydroxylase (CYP46A1) (p < 0.05) and the level of 24 hydroxycholesterol (24-OHC) (p < 0.05), reduce the expression of p-Tau (Thr231)/Tau (p < 0.01), inhibit the formation of lipid droplets.</p><p><strong>Conclusion: </strong>CG may inhibit the accumulation of cholesterol and its derivatives in neurons by affecting the CYP46A1-CE-Tau axis, offering a potential therapeutic strategy for AD.</p>","PeriodicalId":7251,"journal":{"name":"Actas espanolas de psiquiatria","volume":"52 5","pages":"641-652"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475025/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Actas espanolas de psiquiatria","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62641/aep.v52i5.1723","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The pathogenesis of Alzheimer's disease (AD) is complex. Recent research suggests that AD patients have early disorders in brain cholesterol metabolism. Cholesterol and its derivatives accumulate in neurons, leading to p-Tau overproduction and synaptic dysfunction, initiating AD progression. Calycosin-7-O-β-D-glucoside (CG), a distinctive constituent of Astragali Radix, holds a representative position. Many clinical trials have demonstrated that CG can attenuate cerebral ischemia/reperfusion injury and preserve the structural integrity of the blood-brain barrier. However, whether CG alleviates tau-mediated neurodegeneration by increasing cholesterol efflux after lipid accumulation remains unexplored.
Methods: Ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) and multivariate data analysis were employed to investigate metabolic changes in HT22 cells induced by sodium palmitate following 24 hours of CG treatment. The potential therapeutic mechanisms of CG on AD were further examined through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis.
Results: Metabolomic analysis characterized 24 potential biomarkers, revealing that CG could ameliorate cholesterol metabolic pathways. The results of cell experiments revealed that CG can increase the expression of enzyme cholesterol 24-hydroxylase (CYP46A1) (p < 0.05) and the level of 24 hydroxycholesterol (24-OHC) (p < 0.05), reduce the expression of p-Tau (Thr231)/Tau (p < 0.01), inhibit the formation of lipid droplets.
Conclusion: CG may inhibit the accumulation of cholesterol and its derivatives in neurons by affecting the CYP46A1-CE-Tau axis, offering a potential therapeutic strategy for AD.
期刊介绍:
Actas Españolas de Psiquiatría publicará de manera preferente trabajos relacionados con investigación clínica en el
área de la Psiquiatría, la Psicología Clínica y la Salud Mental.