Polymorph sampling with coupling to extended variables: enhanced sampling of polymorph energy landscapes and free energy perturbation of polymorph ensembles.

Eric J Chan, Mark E Tuckerman
{"title":"Polymorph sampling with coupling to extended variables: enhanced sampling of polymorph energy landscapes and free energy perturbation of polymorph ensembles.","authors":"Eric J Chan, Mark E Tuckerman","doi":"10.1107/S205252062400132X","DOIUrl":null,"url":null,"abstract":"<p><p>A novel approach to computationally enhance the sampling of molecular crystal structures is proposed and tested. This method is based on the use of extended variables coupled to a Monte Carlo based crystal polymorph generator. Inspired by the established technique of quasi-random sampling of polymorphs using the rigid molecule constraint, this approach represents molecular clusters as extended variables within a thermal reservoir. Polymorph unit-cell variables are generated using pseudo-random sampling. Within this framework, a harmonic coupling between the extended variables and polymorph configurations is established. The extended variables remain fixed during the inner loop dedicated to polymorph sampling, enforcing a stepwise propagation of the extended variables to maintain system exploration. The final processing step results in a polymorph energy landscape, where the raw structures sampled to create the extended variable trajectory are re-optimized without the thermal coupling term. The foundational principles of this approach are described and its effectiveness using both a Metropolis Monte Carlo type algorithm and modifications that incorporate replica exchange is demonstrated. A comparison is provided with pseudo-random sampling of polymorphs for the molecule coumarin. The choice to test a design of this algorithm as relevant for enhanced sampling of crystal structures was due to the obvious relation between molecular structure variables and corresponding crystal polymorphs as representative of the inherent vapor to crystal transitions that exist in nature. Additionally, it is shown that the trajectories of extended variables can be harnessed to extract fluctuation properties that can lead to valuable insights. A novel thermodynamic variable is introduced: the free energy difference between ensembles of Z' = 1 and Z' = 2 crystal polymorphs.</p>","PeriodicalId":7320,"journal":{"name":"Acta crystallographica Section B, Structural science, crystal engineering and materials","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789163/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica Section B, Structural science, crystal engineering and materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S205252062400132X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel approach to computationally enhance the sampling of molecular crystal structures is proposed and tested. This method is based on the use of extended variables coupled to a Monte Carlo based crystal polymorph generator. Inspired by the established technique of quasi-random sampling of polymorphs using the rigid molecule constraint, this approach represents molecular clusters as extended variables within a thermal reservoir. Polymorph unit-cell variables are generated using pseudo-random sampling. Within this framework, a harmonic coupling between the extended variables and polymorph configurations is established. The extended variables remain fixed during the inner loop dedicated to polymorph sampling, enforcing a stepwise propagation of the extended variables to maintain system exploration. The final processing step results in a polymorph energy landscape, where the raw structures sampled to create the extended variable trajectory are re-optimized without the thermal coupling term. The foundational principles of this approach are described and its effectiveness using both a Metropolis Monte Carlo type algorithm and modifications that incorporate replica exchange is demonstrated. A comparison is provided with pseudo-random sampling of polymorphs for the molecule coumarin. The choice to test a design of this algorithm as relevant for enhanced sampling of crystal structures was due to the obvious relation between molecular structure variables and corresponding crystal polymorphs as representative of the inherent vapor to crystal transitions that exist in nature. Additionally, it is shown that the trajectories of extended variables can be harnessed to extract fluctuation properties that can lead to valuable insights. A novel thermodynamic variable is introduced: the free energy difference between ensembles of Z' = 1 and Z' = 2 crystal polymorphs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与扩展变量耦合的多晶体采样:多晶体能谱的增强采样和多晶体集合的自由能扰动。
本文提出并测试了一种通过计算增强分子晶体结构采样的新方法。该方法基于扩展变量与基于蒙特卡罗的晶体多态生成器的结合使用。受利用刚性分子约束对多晶体进行准随机取样的成熟技术的启发,这种方法将分子簇表示为热库中的扩展变量。多晶体单胞变量是通过伪随机抽样生成的。在此框架内,扩展变量与多晶体构型之间建立了谐波耦合。在多态采样的内循环中,扩展变量保持固定,强制扩展变量逐步传播,以保持系统探索。最后的处理步骤会产生一个多形态能谱,在该能谱中,为创建扩展变量轨迹而采样的原始结构会在没有热耦合项的情况下重新优化。本文介绍了这种方法的基本原理,并展示了使用 Metropolis Monte Carlo 算法和包含复制交换的修改算法的有效性。并与香豆素分子的多态伪随机抽样进行了比较。之所以选择这种算法设计来测试晶体结构的增强采样,是因为分子结构变量与相应的晶体多晶体之间存在明显的关系,这代表了自然界中存在的固有气态到晶体的转变。此外,研究还表明,可以利用扩展变量的轨迹来提取波动特性,从而获得有价值的见解。本文引入了一个新的热力学变量:Z' = 1 和 Z' = 2 晶体多晶体集合之间的自由能差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta crystallographica Section B, Structural science, crystal engineering and materials
Acta crystallographica Section B, Structural science, crystal engineering and materials CHEMISTRY, MULTIDISCIPLINARYCRYSTALLOGRAPH-CRYSTALLOGRAPHY
CiteScore
3.60
自引率
5.30%
发文量
0
期刊介绍: Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials publishes scientific articles related to the structural science of compounds and materials in the widest sense. Knowledge of the arrangements of atoms, including their temporal variations and dependencies on temperature and pressure, is often the key to understanding physical and chemical phenomena and is crucial for the design of new materials and supramolecular devices. Acta Crystallographica B is the forum for the publication of such contributions. Scientific developments based on experimental studies as well as those based on theoretical approaches, including crystal-structure prediction, structure-property relations and the use of databases of crystal structures, are published.
期刊最新文献
Analytical description of nanowires. III. Regular cross sections for Wurtzite structures. Corrigendum. The chemical theory of valence. A rare case of Na/Zn isomorphism in the crystal structure of non-centrosymmetric zincophosphate Na5Zn[Zn(PO4)3]. Selective acceleration and inhibition of crystal growth of glass carbamazepine by low-concentration poly(ethylene oxide):effects of drug polymorph. Structural and magnetic phase transitions in Eu1-xLaxFe3(BO3)4 (x = 0, 0.18).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1