Dongwoo Hyeon, Younghoon Kim, Yaeeun Hwang, Jeong Mo Bae, Gyeong Hoon Kang, Kwangsoo Kim
{"title":"Deep learning-based histological predictions of chromosomal instability in colorectal cancer.","authors":"Dongwoo Hyeon, Younghoon Kim, Yaeeun Hwang, Jeong Mo Bae, Gyeong Hoon Kang, Kwangsoo Kim","doi":"10.62347/JYND6488","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) is a lethal malignancy and a leading cause of cancer-related mortality worldwide. Chromosomal instability (CIN) is a key driver of genomic instability in CRC and is characterized by aneuploidy and somatic copy-number alterations. This study aimed to predict CIN in CRC using histological data from whole slide images (WSIs). CRC samples from TCGA were analyzed, with tumor regions segmented into tiles and nuclei for feature extraction using convolutional neural network (CNN) and morphologic analysis. Binary classification models were developed to distinguish high and low aneuploidy scores (AS) based on slide-level features. The analysis included 313 patients with 315 WSIs, resulting in over 350,000 tumor tiles and nearly 2.7 million tumor cell nuclei. The ResNet18-SSL model, pre-trained on histopathological images, demonstrated superior accuracy in tile-based AS prediction, while DenseNet121 excelled in nucleus-based prediction. Combining CNN-based and morphological features enhanced the classification accuracy of nucleus-based predictions. Additionally, significant correlations were observed between morphological features and copy-number signatures. Unsupervised clustering of nuclear features revealed that distinct groups are significantly correlated with CIN and <i>TP53</i> mutations. This study underscores the potential of histological features from WSIs to predict CIN in CRC samples. Nuclear feature analysis, combined with deep-learning techniques, offers a robust method for CIN prediction, highlighting the importance of further research into the relationships between histological and molecular phenotypes.</p>","PeriodicalId":7437,"journal":{"name":"American journal of cancer research","volume":"14 9","pages":"4495-4505"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477831/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/JYND6488","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Colorectal cancer (CRC) is a lethal malignancy and a leading cause of cancer-related mortality worldwide. Chromosomal instability (CIN) is a key driver of genomic instability in CRC and is characterized by aneuploidy and somatic copy-number alterations. This study aimed to predict CIN in CRC using histological data from whole slide images (WSIs). CRC samples from TCGA were analyzed, with tumor regions segmented into tiles and nuclei for feature extraction using convolutional neural network (CNN) and morphologic analysis. Binary classification models were developed to distinguish high and low aneuploidy scores (AS) based on slide-level features. The analysis included 313 patients with 315 WSIs, resulting in over 350,000 tumor tiles and nearly 2.7 million tumor cell nuclei. The ResNet18-SSL model, pre-trained on histopathological images, demonstrated superior accuracy in tile-based AS prediction, while DenseNet121 excelled in nucleus-based prediction. Combining CNN-based and morphological features enhanced the classification accuracy of nucleus-based predictions. Additionally, significant correlations were observed between morphological features and copy-number signatures. Unsupervised clustering of nuclear features revealed that distinct groups are significantly correlated with CIN and TP53 mutations. This study underscores the potential of histological features from WSIs to predict CIN in CRC samples. Nuclear feature analysis, combined with deep-learning techniques, offers a robust method for CIN prediction, highlighting the importance of further research into the relationships between histological and molecular phenotypes.
期刊介绍:
The American Journal of Cancer Research (AJCR) (ISSN 2156-6976), is an independent open access, online only journal to facilitate rapid dissemination of novel discoveries in basic science and treatment of cancer. It was founded by a group of scientists for cancer research and clinical academic oncologists from around the world, who are devoted to the promotion and advancement of our understanding of the cancer and its treatment. The scope of AJCR is intended to encompass that of multi-disciplinary researchers from any scientific discipline where the primary focus of the research is to increase and integrate knowledge about etiology and molecular mechanisms of carcinogenesis with the ultimate aim of advancing the cure and prevention of this increasingly devastating disease. To achieve these aims AJCR will publish review articles, original articles and new techniques in cancer research and therapy. It will also publish hypothesis, case reports and letter to the editor. Unlike most other open access online journals, AJCR will keep most of the traditional features of paper print that we are all familiar with, such as continuous volume, issue numbers, as well as continuous page numbers to retain our comfortable familiarity towards an academic journal.