IDO1-mediated kynurenine production inhibits IGFBP5 signaling to promote 5-fluorouracil-induced senescence escape and chemoresistance in colorectal cancer.
{"title":"IDO1-mediated kynurenine production inhibits IGFBP5 signaling to promote 5-fluorouracil-induced senescence escape and chemoresistance in colorectal cancer.","authors":"Yu Li, Chao Li, Xufeng Yao, Junjie Lv, Wenjun Li, Rong Fu, Mengyang Chen, Peng Yang, Qian Dai, Wei Wei, Zongwei Li","doi":"10.62347/XTRC3347","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular senescence is an irreversible state of growth arrest, and induction of senescence is considered a potential therapeutic strategy against cancer. Indoleamine 2,3-dioxygenase 1 (IDO1), an enzyme catabolizing L-tryptophan into kynurenine, plays a key role in tumor immune tolerance. However, the roles of IDO1 in cellular senescence and chemoresistance remain elusive. Herein, we observed a significant elevation of IDO1 expression in colorectal cancer (CRC) tissues compared to non-neoplastic controls, based on both the GEPIA database and mouse model. Functionally, ectopic expression of IDO1 blunted 5-fluorouracil (5-FU)-induced cell senescence and rendered CRC cells more refractory towards 5-FU treatment, whereas IDO1 silencing resulted in opposing effects. Further studies demonstrated that IDO1 overexpression decreased the levels of senescent-related proteins, including p16, p21, p53, and cyclin D1. Mechanistically, the kynurenine released from IDO1-expressing CRC cells inhibited the IGFBP5/p53 signaling pathway, accounting for IDO1-mediated suppression of cell senescence and induction of chemoresistance. Collectively, these data revealed an unrecognized role of IDO1 in senescence escape and chemoresistance via releasing its catabolite kynurenine, implicating that therapeutically targeting IDO1 or IGFBP5/p53 signaling pathway holds great promise for CRC treatment.</p>","PeriodicalId":7437,"journal":{"name":"American journal of cancer research","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477834/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/XTRC3347","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cellular senescence is an irreversible state of growth arrest, and induction of senescence is considered a potential therapeutic strategy against cancer. Indoleamine 2,3-dioxygenase 1 (IDO1), an enzyme catabolizing L-tryptophan into kynurenine, plays a key role in tumor immune tolerance. However, the roles of IDO1 in cellular senescence and chemoresistance remain elusive. Herein, we observed a significant elevation of IDO1 expression in colorectal cancer (CRC) tissues compared to non-neoplastic controls, based on both the GEPIA database and mouse model. Functionally, ectopic expression of IDO1 blunted 5-fluorouracil (5-FU)-induced cell senescence and rendered CRC cells more refractory towards 5-FU treatment, whereas IDO1 silencing resulted in opposing effects. Further studies demonstrated that IDO1 overexpression decreased the levels of senescent-related proteins, including p16, p21, p53, and cyclin D1. Mechanistically, the kynurenine released from IDO1-expressing CRC cells inhibited the IGFBP5/p53 signaling pathway, accounting for IDO1-mediated suppression of cell senescence and induction of chemoresistance. Collectively, these data revealed an unrecognized role of IDO1 in senescence escape and chemoresistance via releasing its catabolite kynurenine, implicating that therapeutically targeting IDO1 or IGFBP5/p53 signaling pathway holds great promise for CRC treatment.
期刊介绍:
The American Journal of Cancer Research (AJCR) (ISSN 2156-6976), is an independent open access, online only journal to facilitate rapid dissemination of novel discoveries in basic science and treatment of cancer. It was founded by a group of scientists for cancer research and clinical academic oncologists from around the world, who are devoted to the promotion and advancement of our understanding of the cancer and its treatment. The scope of AJCR is intended to encompass that of multi-disciplinary researchers from any scientific discipline where the primary focus of the research is to increase and integrate knowledge about etiology and molecular mechanisms of carcinogenesis with the ultimate aim of advancing the cure and prevention of this increasingly devastating disease. To achieve these aims AJCR will publish review articles, original articles and new techniques in cancer research and therapy. It will also publish hypothesis, case reports and letter to the editor. Unlike most other open access online journals, AJCR will keep most of the traditional features of paper print that we are all familiar with, such as continuous volume, issue numbers, as well as continuous page numbers to retain our comfortable familiarity towards an academic journal.