Synergistic anti-tumor activity, reduced pERK, and immuno-stimulatory cytokine profiles with 5-FU or ONC212 plus KRAS G12D inhibitor MRTX1133 in CRC and pancreatic cancer cells independent of G12D mutation.
Vida Tajiknia, Maximilian Pinho-Schwermann, Praveen R Srinivasan, Liz Hernandez Borrero, Leiqing Zhang, Kelsey E Huntington, Wafik S El-Deiry
{"title":"Synergistic anti-tumor activity, reduced pERK, and immuno-stimulatory cytokine profiles with 5-FU or ONC212 plus KRAS G12D inhibitor MRTX1133 in CRC and pancreatic cancer cells independent of G12D mutation.","authors":"Vida Tajiknia, Maximilian Pinho-Schwermann, Praveen R Srinivasan, Liz Hernandez Borrero, Leiqing Zhang, Kelsey E Huntington, Wafik S El-Deiry","doi":"10.62347/DVXL1377","DOIUrl":null,"url":null,"abstract":"<p><p>KRAS mutations occur in ~40-50% of mCRC and are associated with aggressive disease that is refractory to anti-EGFR therapies. Pancreatic cancer harbors ~90% KRAS driver gene mutation frequency. Small molecules targeting KRAS G12C gained FDA approval for KRAS G12C-mutated NSCLC. ONC212, a fluorinated imipridone with nM anti-cancer activity has preclinical efficacy against pancreatic cancer and other malignancies. MRTX1133, identified as a noncovalent selective KRAS G12D inhibitor that suppresses G12D signaling by binding to the switch II pocket thereby inhibiting protein-protein interactions. We investigated cell viability, drug synergies, pERK suppression and cytokine, chemokine or growth factor alterations following treatment with 5-Fluorouracil (5-FU) or ONC212 plus MRTX1133 in 6 human CRC and 4 human pancreatic cancer cell lines. IC50 sensitivities ranged from 7 to 12 µM for 5-FU, 0.2-0.8 µM for ONC212, and > 100 nM to > 5,000 nM for MRTX1133 (G12D N = 4: LS513 > 100, HPAF-II > 1,000, SNUC2B > 5,000, PANC-1 > 5,000). For non-G12D, the range of IC50 for MRTX1133 was > 1,000 to > 5,000 nM for CRC lines with G12V, G13D, or WT KRAS (N = 7). Synergies between MRTX1133 plus 5-FU or ONC212 were observed regardless of KRAS G12D mutation with combination indices of < 0.5 indicating strong synergy. Observed synergies were greater with MRTX1133 plus ONC212 compared to MRTX1133 plus 5-FU. pERK was suppressed with mutant but not wild-type KRAS at nM MRTX1133 doses. Immunostimulatory profiles included reduction in IL8/CXCL8, MICA, Angiopoietin 2, VEGF and TNF-alpha and increase in IL-18/IL-1F4 with MRTX treatments and combinations. Our studies reveal preclinical activity of MRTX1133 alone or synergies when combined with 5-FU or ONC212 against mCRC and pancreatic cancer cells regardless of KRAS G12D mutation. The results suggest that KRAS G12V and KRAS G13D should be further considered in clinical trials including combination therapies involving MRTX1133 and 5-FU or ONC212.</p>","PeriodicalId":7437,"journal":{"name":"American journal of cancer research","volume":"14 9","pages":"4523-4536"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477830/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/DVXL1377","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
KRAS mutations occur in ~40-50% of mCRC and are associated with aggressive disease that is refractory to anti-EGFR therapies. Pancreatic cancer harbors ~90% KRAS driver gene mutation frequency. Small molecules targeting KRAS G12C gained FDA approval for KRAS G12C-mutated NSCLC. ONC212, a fluorinated imipridone with nM anti-cancer activity has preclinical efficacy against pancreatic cancer and other malignancies. MRTX1133, identified as a noncovalent selective KRAS G12D inhibitor that suppresses G12D signaling by binding to the switch II pocket thereby inhibiting protein-protein interactions. We investigated cell viability, drug synergies, pERK suppression and cytokine, chemokine or growth factor alterations following treatment with 5-Fluorouracil (5-FU) or ONC212 plus MRTX1133 in 6 human CRC and 4 human pancreatic cancer cell lines. IC50 sensitivities ranged from 7 to 12 µM for 5-FU, 0.2-0.8 µM for ONC212, and > 100 nM to > 5,000 nM for MRTX1133 (G12D N = 4: LS513 > 100, HPAF-II > 1,000, SNUC2B > 5,000, PANC-1 > 5,000). For non-G12D, the range of IC50 for MRTX1133 was > 1,000 to > 5,000 nM for CRC lines with G12V, G13D, or WT KRAS (N = 7). Synergies between MRTX1133 plus 5-FU or ONC212 were observed regardless of KRAS G12D mutation with combination indices of < 0.5 indicating strong synergy. Observed synergies were greater with MRTX1133 plus ONC212 compared to MRTX1133 plus 5-FU. pERK was suppressed with mutant but not wild-type KRAS at nM MRTX1133 doses. Immunostimulatory profiles included reduction in IL8/CXCL8, MICA, Angiopoietin 2, VEGF and TNF-alpha and increase in IL-18/IL-1F4 with MRTX treatments and combinations. Our studies reveal preclinical activity of MRTX1133 alone or synergies when combined with 5-FU or ONC212 against mCRC and pancreatic cancer cells regardless of KRAS G12D mutation. The results suggest that KRAS G12V and KRAS G13D should be further considered in clinical trials including combination therapies involving MRTX1133 and 5-FU or ONC212.
期刊介绍:
The American Journal of Cancer Research (AJCR) (ISSN 2156-6976), is an independent open access, online only journal to facilitate rapid dissemination of novel discoveries in basic science and treatment of cancer. It was founded by a group of scientists for cancer research and clinical academic oncologists from around the world, who are devoted to the promotion and advancement of our understanding of the cancer and its treatment. The scope of AJCR is intended to encompass that of multi-disciplinary researchers from any scientific discipline where the primary focus of the research is to increase and integrate knowledge about etiology and molecular mechanisms of carcinogenesis with the ultimate aim of advancing the cure and prevention of this increasingly devastating disease. To achieve these aims AJCR will publish review articles, original articles and new techniques in cancer research and therapy. It will also publish hypothesis, case reports and letter to the editor. Unlike most other open access online journals, AJCR will keep most of the traditional features of paper print that we are all familiar with, such as continuous volume, issue numbers, as well as continuous page numbers to retain our comfortable familiarity towards an academic journal.