The potential of exosomal biomarkers: Revolutionizing Parkinson's disease: How do they influence pathogenesis, diagnosis, and therapeutic strategies?

IF 3.1 Q2 NEUROSCIENCES AIMS Neuroscience Pub Date : 2024-09-23 eCollection Date: 2024-01-01 DOI:10.3934/Neuroscience.2024023
Naeimeh Akbari-Gharalari, Maryam Ghahremani-Nasab, Roya Naderi, Leila Chodari, Farshad Nezhadshahmohammad
{"title":"The potential of exosomal biomarkers: Revolutionizing Parkinson's disease: How do they influence pathogenesis, diagnosis, and therapeutic strategies?","authors":"Naeimeh Akbari-Gharalari, Maryam Ghahremani-Nasab, Roya Naderi, Leila Chodari, Farshad Nezhadshahmohammad","doi":"10.3934/Neuroscience.2024023","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is characterized by the pathological accumulation of α-synuclein, which has driven extensive research into the role of exosomes in disease mechanisms. Exosomes are nanoscale vesicles enriched with proteins, RNA, and lipids that facilitate critical intercellular communication processes. Recent studies have elucidated the role of exosomes in transmitting misfolded proteins among neurons, which significantly impacts the progression of PD. The presence of disease-associated exosomes in cerebrospinal fluid and blood highlights their substantial diagnostic potential for PD. Specifically, exosomes derived from the central nervous system (CNS) have emerged as promising biomarkers because of their ability to accurately reflect pathological states. Furthermore, the isolation of exosomes from distinct brain cell types allows the identification of precise biomarkers, increasing diagnostic specificity and accuracy. In addition to being useful for diagnostics, exosomes hold therapeutic promise given their ability to cross the blood-brain barrier (BBB) and selectively modulate their cargo. These findings suggest that these materials could be used as delivery systems for therapeutic drugs for the treatment of neurodegenerative diseases. This review comprehensively examines the multifaceted roles of exosomes in PD pathogenesis, diagnosis, and treatment. It also addresses the associated clinical challenges and underscores the urgent need for further research and development to fully leverage exosome-based strategies in PD management.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486621/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/Neuroscience.2024023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Parkinson's disease (PD) is characterized by the pathological accumulation of α-synuclein, which has driven extensive research into the role of exosomes in disease mechanisms. Exosomes are nanoscale vesicles enriched with proteins, RNA, and lipids that facilitate critical intercellular communication processes. Recent studies have elucidated the role of exosomes in transmitting misfolded proteins among neurons, which significantly impacts the progression of PD. The presence of disease-associated exosomes in cerebrospinal fluid and blood highlights their substantial diagnostic potential for PD. Specifically, exosomes derived from the central nervous system (CNS) have emerged as promising biomarkers because of their ability to accurately reflect pathological states. Furthermore, the isolation of exosomes from distinct brain cell types allows the identification of precise biomarkers, increasing diagnostic specificity and accuracy. In addition to being useful for diagnostics, exosomes hold therapeutic promise given their ability to cross the blood-brain barrier (BBB) and selectively modulate their cargo. These findings suggest that these materials could be used as delivery systems for therapeutic drugs for the treatment of neurodegenerative diseases. This review comprehensively examines the multifaceted roles of exosomes in PD pathogenesis, diagnosis, and treatment. It also addresses the associated clinical challenges and underscores the urgent need for further research and development to fully leverage exosome-based strategies in PD management.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
外泌体生物标记物的潜力:彻底改变帕金森病:它们如何影响发病机制、诊断和治疗策略?
帕金森病(PD)的特征是α-突触核蛋白的病理性积累,这推动了对外体在疾病机制中的作用的广泛研究。外泌体是一种富含蛋白质、核糖核酸和脂质的纳米级囊泡,可促进关键的细胞间通信过程。最近的研究阐明了外泌体在神经元间传递折叠错误的蛋白质方面的作用,这对帕金森病的进展产生了重大影响。脑脊液和血液中存在与疾病相关的外泌体,这突显了外泌体在诊断帕金森病方面的巨大潜力。具体来说,源自中枢神经系统(CNS)的外泌体因其能准确反映病理状态而成为有前景的生物标记物。此外,从不同的脑细胞类型中分离外泌体可以鉴定出精确的生物标记物,从而提高诊断的特异性和准确性。除了可用于诊断,外泌体还具有治疗前景,因为它们能够穿过血脑屏障(BBB)并选择性地调节其载体。这些发现表明,这些材料可用作治疗药物的递送系统,用于治疗神经退行性疾病。本综述全面探讨了外泌体在帕金森病发病机制、诊断和治疗中的多方面作用。它还探讨了相关的临床挑战,并强调了进一步研究和开发的迫切需要,以充分利用基于外泌体的策略来治疗帕金森病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIMS Neuroscience
AIMS Neuroscience NEUROSCIENCES-
CiteScore
4.20
自引率
0.00%
发文量
26
审稿时长
8 weeks
期刊介绍: AIMS Neuroscience is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers from all areas in the field of neuroscience. The primary focus is to provide a forum in which to expedite the speed with which theoretical neuroscience progresses toward generating testable hypotheses. In the presence of current and developing technology that offers unprecedented access to functions of the nervous system at all levels, the journal is designed to serve the role of providing the widest variety of the best theoretical views leading to suggested studies. Single blind peer review is provided for all articles and commentaries.
期刊最新文献
Vagus nerve stimulation in dementia: A scoping review of clinical and pre-clinical studies. The potential of exosomal biomarkers: Revolutionizing Parkinson's disease: How do they influence pathogenesis, diagnosis, and therapeutic strategies? The effects of right temporoparietal junction stimulation on embodiment, presence, and performance in teleoperation. Cognitive effects of brief and intensive neurofeedback treatment in schizophrenia: a single center pilot study. Novel perspective of therapeutic modules to overcome motor and nonmotor symptoms in Parkinson's disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1