{"title":"Crystal structure of the GDP-bound GTPase Era from Staphylococcus aureus","authors":"Evelina Klochkova , Artem Biktimirov , Daut Islamov , Anatolii Belousov , Shamil Validov , Marat Yusupov , Konstantin Usachev","doi":"10.1016/j.bbrc.2024.150852","DOIUrl":null,"url":null,"abstract":"<div><div>GTPase Era from <em>Staphylococcus aureus</em> belongs to the TRAFAC superfamily of the TrmE-Era-EngA-EngB-Septin-like GTPases class and plays a significant role in the vital activity of this pathogenic microorganism as a maturation factor of the 30S ribosome subunit. However, the functions of this protein are not fully understood, making it a promising object for further study. Here, the 2.76 Å resolution crystal structure of <em>Staphylococcus aureus</em> Era in complex with GDP is presented. Structural comparison with other GTP-bound and GDP-bound homologous proteins, GTPase domain and the KH domain revealed a mutual orientation in <em>S. aureus</em> which has not been described before. The GDP-bound Era structure presented here will facilitate efforts to elucidate its interactions with its regulators and lay the foundation for a structure-based search for specific inhibitors.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24013883","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
GTPase Era from Staphylococcus aureus belongs to the TRAFAC superfamily of the TrmE-Era-EngA-EngB-Septin-like GTPases class and plays a significant role in the vital activity of this pathogenic microorganism as a maturation factor of the 30S ribosome subunit. However, the functions of this protein are not fully understood, making it a promising object for further study. Here, the 2.76 Å resolution crystal structure of Staphylococcus aureus Era in complex with GDP is presented. Structural comparison with other GTP-bound and GDP-bound homologous proteins, GTPase domain and the KH domain revealed a mutual orientation in S. aureus which has not been described before. The GDP-bound Era structure presented here will facilitate efforts to elucidate its interactions with its regulators and lay the foundation for a structure-based search for specific inhibitors.
来自金黄色葡萄球菌的 GTPase Era 属于 TRAFAC 超家族的 TrmE-Era-EngA-EngB-Septin 样 GTPases 类,作为 30S 核糖体亚基的成熟因子,在该病原微生物的生命活动中发挥着重要作用。然而,人们对这种蛋白质的功能并不完全了解,因此它是一个值得进一步研究的对象。本文展示了金黄色葡萄球菌 Era 与 GDP 复合物的 2.76 Å 分辨率晶体结构。通过与其他 GTP 结合型和 GDP 结合型同源蛋白、GTPase 结构域和 KH 结构域的结构比较,发现了金黄色葡萄球菌中的一个相互取向,而这一取向以前从未被描述过。本文介绍的 GDP 结合型 Era 结构将有助于阐明它与其调节因子之间的相互作用,并为基于结构寻找特异性抑制剂奠定基础。
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics