Experimental Mouse Models and Human Lung Organoid Models for Studying Chronic Obstructive Pulmonary Disease.

IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Biomolecules & Therapeutics Pub Date : 2024-11-01 Epub Date: 2024-10-16 DOI:10.4062/biomolther.2024.148
Young Ae Joe, Min Ju Lee, Hong Seok Choi
{"title":"Experimental Mouse Models and Human Lung Organoid Models for Studying Chronic Obstructive Pulmonary Disease.","authors":"Young Ae Joe, Min Ju Lee, Hong Seok Choi","doi":"10.4062/biomolther.2024.148","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic obstructive pulmonary disease (COPD), a leading cause of morbidity and mortality throughout the world, is a highly complicated disease that includes chronic airway inflammation, airway remodeling, emphysema, and mucus hypersecretion. For respiratory function, an intact lung structure is required for efficient air flow through conducting airways and gas exchange in alveoli. Structural changes in small airways and inflammation are major features of COPD. At present, mechanisms involved in the genesis and development of COPD are poorly understood. Currently, there are no effective treatments for COPD. To develop better treatment strategies, it is necessary to study mechanisms of COPD using proper experimental models that can recapitulate distinctive features of human COPD. Therefore, this review will discuss representative established mouse models to investigate inflammatory processes and basic mechanisms of COPD. In addition, human COPD-mimicking human lung organoid models are introduced to help researchers overcome limits of mouse COPD models.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"685-696"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535291/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4062/biomolther.2024.148","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic obstructive pulmonary disease (COPD), a leading cause of morbidity and mortality throughout the world, is a highly complicated disease that includes chronic airway inflammation, airway remodeling, emphysema, and mucus hypersecretion. For respiratory function, an intact lung structure is required for efficient air flow through conducting airways and gas exchange in alveoli. Structural changes in small airways and inflammation are major features of COPD. At present, mechanisms involved in the genesis and development of COPD are poorly understood. Currently, there are no effective treatments for COPD. To develop better treatment strategies, it is necessary to study mechanisms of COPD using proper experimental models that can recapitulate distinctive features of human COPD. Therefore, this review will discuss representative established mouse models to investigate inflammatory processes and basic mechanisms of COPD. In addition, human COPD-mimicking human lung organoid models are introduced to help researchers overcome limits of mouse COPD models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于研究慢性阻塞性肺病的实验小鼠模型和人体肺器官模型
慢性阻塞性肺疾病(COPD)是全球发病率和死亡率的主要原因,是一种高度复杂的疾病,包括慢性气道炎症、气道重塑、肺气肿和粘液分泌过多。为了实现呼吸功能,需要完整的肺部结构来保证气流通过导气管和肺泡进行气体交换时的效率。小气道的结构变化和炎症是慢性阻塞性肺病的主要特征。目前,人们对慢性阻塞性肺病的发生和发展机制知之甚少。目前,慢性阻塞性肺病还没有有效的治疗方法。为了制定更好的治疗策略,有必要使用能再现人类慢性阻塞性肺病显著特征的适当实验模型来研究慢性阻塞性肺病的发病机制。因此,本综述将讨论具有代表性的小鼠模型,以研究慢性阻塞性肺病的炎症过程和基本机制。此外,还将介绍模拟人类慢性阻塞性肺病的类人肺器官模型,以帮助研究人员克服小鼠慢性阻塞性肺病模型的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
8.10%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Biomolecules & Therapeutics (Biomolecules & Therapeutics) (Print ISSN 1976-9148, Online ISSN 2005-4483) is an international, peer-reviewed, open access journal that covers pharmacological and toxicological fields related to bioactive molecules and therapeutics. It was launched in 1993 as "The Journal of Applied Pharmacology (ISSN 1225-6110)", and renamed "Biomolecules & Therapeutics" (Biomol Ther: abbreviated form) in 2008 (Volume 16, No. 1). It is published bimonthly in January, March, May, July, September and November. All manuscripts should be creative, informative, and contribute to the development of new drugs. Articles in the following categories are published: review articles and research articles.
期刊最新文献
Isoorientin Suppresses Invasion of Breast and Colon Cancer Cells by Inhibition of CXC Chemokine Receptor 4 Expression. Jolkinolide B Ameliorates Liver Inflammation and Lipogenesis by Regulating JAK/STAT3 Pathway. Phytotherapeutic BS012 and Its Active Component Ameliorate Allergic Asthma via Inhibition of Th2-Mediated Immune Response and Apoptosis. Regulatory Mechanisms Governing the Autophagy-Initiating VPS34 Complex and Its inhibitors. Translation Initiation Factor-2S2 (eIF2S2) Contributes to Cervical Carcinogenesis by Inhibiting the TGF-β/SMAD4 Signaling Pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1