AntigenBoost: enhanced mRNA-based antigen expression through rational amino acid substitution.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Briefings in bioinformatics Pub Date : 2024-09-23 DOI:10.1093/bib/bbae468
Yumiao Gao, Siran Zhu, Huichun Li, Xueting Hao, Wen Chen, Deng Pan, Zhikang Qian
{"title":"AntigenBoost: enhanced mRNA-based antigen expression through rational amino acid substitution.","authors":"Yumiao Gao, Siran Zhu, Huichun Li, Xueting Hao, Wen Chen, Deng Pan, Zhikang Qian","doi":"10.1093/bib/bbae468","DOIUrl":null,"url":null,"abstract":"<p><p>Messenger RNA (mRNA) vaccines represent a groundbreaking advancement in immunology and public health, particularly highlighted by their role in combating the COVID-19 pandemic. Optimizing mRNA-based antigen expression is a crucial focus in this emerging industry. We have developed a bioinformatics tool named AntigenBoost to address the challenge posed by destabilizing dipeptides that hinder ribosomal translation. AntigenBoost identifies these dipeptides within specific antigens and provides a range of potential amino acid substitution strategies using a two-dimensional scoring system. Through a combination of bioinformatics analysis and experimental validation, we significantly enhanced the in vitro expression of mRNA-derived Respiratory Syncytial Virus fusion glycoprotein and Influenza A Hemagglutinin antigen. Notably, a single amino acid substitution improved the immune response in mice, underscoring the effectiveness of AntigenBoost in mRNA vaccine design.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472322/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae468","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Messenger RNA (mRNA) vaccines represent a groundbreaking advancement in immunology and public health, particularly highlighted by their role in combating the COVID-19 pandemic. Optimizing mRNA-based antigen expression is a crucial focus in this emerging industry. We have developed a bioinformatics tool named AntigenBoost to address the challenge posed by destabilizing dipeptides that hinder ribosomal translation. AntigenBoost identifies these dipeptides within specific antigens and provides a range of potential amino acid substitution strategies using a two-dimensional scoring system. Through a combination of bioinformatics analysis and experimental validation, we significantly enhanced the in vitro expression of mRNA-derived Respiratory Syncytial Virus fusion glycoprotein and Influenza A Hemagglutinin antigen. Notably, a single amino acid substitution improved the immune response in mice, underscoring the effectiveness of AntigenBoost in mRNA vaccine design.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AntigenBoost:通过合理的氨基酸替换增强基于 mRNA 的抗原表达。
信使核糖核酸(mRNA)疫苗是免疫学和公共卫生领域的突破性进展,在抗击 COVID-19 大流行中发挥的作用尤其突出。优化基于 mRNA 的抗原表达是这一新兴产业的关键重点。我们开发了一种名为 AntigenBoost 的生物信息学工具,以应对阻碍核糖体翻译的不稳定二肽带来的挑战。AntigenBoost 可识别特定抗原中的这些二肽,并利用二维评分系统提供一系列潜在的氨基酸替代策略。通过结合生物信息学分析和实验验证,我们显著提高了源自 mRNA 的呼吸道合胞病毒融合糖蛋白和甲型流感血凝素抗原的体外表达。值得注意的是,单个氨基酸的替换就能改善小鼠的免疫反应,这突出了 AntigenBoost 在 mRNA 疫苗设计中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
期刊最新文献
Atomistic simulations reveal impacts of missense mutations on the structure and function of SynGAP1. COFFEE: consensus single cell-type specific inference for gene regulatory networks. DrugDoctor: enhancing drug recommendation in cold-start scenario via visit-level representation learning and training. 3t-seq: automatic gene expression analysis of single-copy genes, transposable elements, and tRNAs from RNA-seq data. AESurv: autoencoder survival analysis for accurate early prediction of coronary heart disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1