Zhen Wang, Ziqi Liu, Wei Zhang, Yanjun Li, Yizhen Feng, Shaokang Lv, Han Diao, Zhaofeng Luo, Pengju Yan, Min He, Xiaolin Li
{"title":"AptaDiff: de novo design and optimization of aptamers based on diffusion models.","authors":"Zhen Wang, Ziqi Liu, Wei Zhang, Yanjun Li, Yizhen Feng, Shaokang Lv, Han Diao, Zhaofeng Luo, Pengju Yan, Min He, Xiaolin Li","doi":"10.1093/bib/bbae517","DOIUrl":null,"url":null,"abstract":"<p><p>Aptamers are single-stranded nucleic acid ligands, featuring high affinity and specificity to target molecules. Traditionally they are identified from large DNA/RNA libraries using $in vitro$ methods, like Systematic Evolution of Ligands by Exponential Enrichment (SELEX). However, these libraries capture only a small fraction of theoretical sequence space, and various aptamer candidates are constrained by actual sequencing capabilities from the experiment. Addressing this, we proposed AptaDiff, the first in silico aptamer design and optimization method based on the diffusion model. Our Aptadiff can generate aptamers beyond the constraints of high-throughput sequencing data, leveraging motif-dependent latent embeddings from variational autoencoder, and can optimize aptamers by affinity-guided aptamer generation according to Bayesian optimization. Comparative evaluations revealed AptaDiff's superiority over existing aptamer generation methods in terms of quality and fidelity across four high-throughput screening data targeting distinct proteins. Moreover, surface plasmon resonance experiments were conducted to validate the binding affinity of aptamers generated through Bayesian optimization for two target proteins. The results unveiled a significant boost of $87.9\\%$ and $60.2\\%$ in RU values, along with a 3.6-fold and 2.4-fold decrease in KD values for the respective target proteins. Notably, the optimized aptamers demonstrated superior binding affinity compared to top experimental candidates selected through SELEX, underscoring the promising outcomes of our AptaDiff in accelerating the discovery of superior aptamers.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491854/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae517","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Aptamers are single-stranded nucleic acid ligands, featuring high affinity and specificity to target molecules. Traditionally they are identified from large DNA/RNA libraries using $in vitro$ methods, like Systematic Evolution of Ligands by Exponential Enrichment (SELEX). However, these libraries capture only a small fraction of theoretical sequence space, and various aptamer candidates are constrained by actual sequencing capabilities from the experiment. Addressing this, we proposed AptaDiff, the first in silico aptamer design and optimization method based on the diffusion model. Our Aptadiff can generate aptamers beyond the constraints of high-throughput sequencing data, leveraging motif-dependent latent embeddings from variational autoencoder, and can optimize aptamers by affinity-guided aptamer generation according to Bayesian optimization. Comparative evaluations revealed AptaDiff's superiority over existing aptamer generation methods in terms of quality and fidelity across four high-throughput screening data targeting distinct proteins. Moreover, surface plasmon resonance experiments were conducted to validate the binding affinity of aptamers generated through Bayesian optimization for two target proteins. The results unveiled a significant boost of $87.9\%$ and $60.2\%$ in RU values, along with a 3.6-fold and 2.4-fold decrease in KD values for the respective target proteins. Notably, the optimized aptamers demonstrated superior binding affinity compared to top experimental candidates selected through SELEX, underscoring the promising outcomes of our AptaDiff in accelerating the discovery of superior aptamers.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.