scMGATGRN: a multiview graph attention network-based method for inferring gene regulatory networks from single-cell transcriptomic data.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Briefings in bioinformatics Pub Date : 2024-09-23 DOI:10.1093/bib/bbae526
Lin Yuan, Ling Zhao, Yufeng Jiang, Zhen Shen, Qinhu Zhang, Ming Zhang, Chun-Hou Zheng, De-Shuang Huang
{"title":"scMGATGRN: a multiview graph attention network-based method for inferring gene regulatory networks from single-cell transcriptomic data.","authors":"Lin Yuan, Ling Zhao, Yufeng Jiang, Zhen Shen, Qinhu Zhang, Ming Zhang, Chun-Hou Zheng, De-Shuang Huang","doi":"10.1093/bib/bbae526","DOIUrl":null,"url":null,"abstract":"<p><p>The gene regulatory network (GRN) plays a vital role in understanding the structure and dynamics of cellular systems, revealing complex regulatory relationships, and exploring disease mechanisms. Recently, deep learning (DL)-based methods have been proposed to infer GRNs from single-cell transcriptomic data and achieved impressive performance. However, these methods do not fully utilize graph topological information and high-order neighbor information from multiple receptive fields. To overcome those limitations, we propose a novel model based on multiview graph attention network, namely, scMGATGRN, to infer GRNs. scMGATGRN mainly consists of GAT, multiview, and view-level attention mechanism. GAT can extract essential features of the gene regulatory network. The multiview model can simultaneously utilize local feature information and high-order neighbor feature information of nodes in the gene regulatory network. The view-level attention mechanism dynamically adjusts the relative importance of node embedding representations and efficiently aggregates node embedding representations from two views. To verify the effectiveness of scMGATGRN, we compared its performance with 10 methods (five shallow learning algorithms and five state-of-the-art DL-based methods) on seven benchmark single-cell RNA sequencing (scRNA-seq) datasets from five cell lines (two in human and three in mouse) with four different kinds of ground-truth networks. The experimental results not only show that scMGATGRN outperforms competing methods but also demonstrate the potential of this model in inferring GRNs. The code and data of scMGATGRN are made freely available on GitHub (https://github.com/nathanyl/scMGATGRN).</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484520/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae526","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The gene regulatory network (GRN) plays a vital role in understanding the structure and dynamics of cellular systems, revealing complex regulatory relationships, and exploring disease mechanisms. Recently, deep learning (DL)-based methods have been proposed to infer GRNs from single-cell transcriptomic data and achieved impressive performance. However, these methods do not fully utilize graph topological information and high-order neighbor information from multiple receptive fields. To overcome those limitations, we propose a novel model based on multiview graph attention network, namely, scMGATGRN, to infer GRNs. scMGATGRN mainly consists of GAT, multiview, and view-level attention mechanism. GAT can extract essential features of the gene regulatory network. The multiview model can simultaneously utilize local feature information and high-order neighbor feature information of nodes in the gene regulatory network. The view-level attention mechanism dynamically adjusts the relative importance of node embedding representations and efficiently aggregates node embedding representations from two views. To verify the effectiveness of scMGATGRN, we compared its performance with 10 methods (five shallow learning algorithms and five state-of-the-art DL-based methods) on seven benchmark single-cell RNA sequencing (scRNA-seq) datasets from five cell lines (two in human and three in mouse) with four different kinds of ground-truth networks. The experimental results not only show that scMGATGRN outperforms competing methods but also demonstrate the potential of this model in inferring GRNs. The code and data of scMGATGRN are made freely available on GitHub (https://github.com/nathanyl/scMGATGRN).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
scMGATGRN:一种基于多视图图注意网络的方法,用于从单细胞转录组数据中推断基因调控网络。
基因调控网络(GRN)在理解细胞系统的结构和动态、揭示复杂的调控关系以及探索疾病机理方面发挥着至关重要的作用。最近,有人提出了基于深度学习(DL)的方法来从单细胞转录组数据中推断基因调控网络,并取得了令人瞩目的成绩。然而,这些方法并没有充分利用图拓扑信息和来自多个感受野的高阶邻居信息。为了克服这些局限,我们提出了一种基于多视图图注意网络的新型模型,即 scMGATGRN,来推断 GRN。GAT 可以提取基因调控网络的基本特征。多视图模型可以同时利用基因调控网络中节点的局部特征信息和高阶相邻特征信息。视图级注意力机制可动态调整节点嵌入表征的相对重要性,并有效聚合来自两个视图的节点嵌入表征。为了验证 scMGATGRN 的有效性,我们在 7 个基准单细胞 RNA 测序(scRNA-seq)数据集上比较了 scMGATGRN 和 10 种方法(5 种浅层学习算法和 5 种基于 DL 的先进方法)的性能,这些数据集来自 5 个细胞系(2 个人类细胞系和 3 个小鼠细胞系)和 4 种不同的地面实况网络。实验结果不仅表明 scMGATGRN 优于其他竞争方法,还证明了该模型在推断 GRN 方面的潜力。scMGATGRN 的代码和数据可在 GitHub(https://github.com/nathanyl/scMGATGRN)上免费获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
期刊最新文献
Atomistic simulations reveal impacts of missense mutations on the structure and function of SynGAP1. COFFEE: consensus single cell-type specific inference for gene regulatory networks. DrugDoctor: enhancing drug recommendation in cold-start scenario via visit-level representation learning and training. 3t-seq: automatic gene expression analysis of single-copy genes, transposable elements, and tRNAs from RNA-seq data. AESurv: autoencoder survival analysis for accurate early prediction of coronary heart disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1