Lin Yuan, Ling Zhao, Yufeng Jiang, Zhen Shen, Qinhu Zhang, Ming Zhang, Chun-Hou Zheng, De-Shuang Huang
{"title":"scMGATGRN: a multiview graph attention network-based method for inferring gene regulatory networks from single-cell transcriptomic data.","authors":"Lin Yuan, Ling Zhao, Yufeng Jiang, Zhen Shen, Qinhu Zhang, Ming Zhang, Chun-Hou Zheng, De-Shuang Huang","doi":"10.1093/bib/bbae526","DOIUrl":null,"url":null,"abstract":"<p><p>The gene regulatory network (GRN) plays a vital role in understanding the structure and dynamics of cellular systems, revealing complex regulatory relationships, and exploring disease mechanisms. Recently, deep learning (DL)-based methods have been proposed to infer GRNs from single-cell transcriptomic data and achieved impressive performance. However, these methods do not fully utilize graph topological information and high-order neighbor information from multiple receptive fields. To overcome those limitations, we propose a novel model based on multiview graph attention network, namely, scMGATGRN, to infer GRNs. scMGATGRN mainly consists of GAT, multiview, and view-level attention mechanism. GAT can extract essential features of the gene regulatory network. The multiview model can simultaneously utilize local feature information and high-order neighbor feature information of nodes in the gene regulatory network. The view-level attention mechanism dynamically adjusts the relative importance of node embedding representations and efficiently aggregates node embedding representations from two views. To verify the effectiveness of scMGATGRN, we compared its performance with 10 methods (five shallow learning algorithms and five state-of-the-art DL-based methods) on seven benchmark single-cell RNA sequencing (scRNA-seq) datasets from five cell lines (two in human and three in mouse) with four different kinds of ground-truth networks. The experimental results not only show that scMGATGRN outperforms competing methods but also demonstrate the potential of this model in inferring GRNs. The code and data of scMGATGRN are made freely available on GitHub (https://github.com/nathanyl/scMGATGRN).</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484520/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae526","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The gene regulatory network (GRN) plays a vital role in understanding the structure and dynamics of cellular systems, revealing complex regulatory relationships, and exploring disease mechanisms. Recently, deep learning (DL)-based methods have been proposed to infer GRNs from single-cell transcriptomic data and achieved impressive performance. However, these methods do not fully utilize graph topological information and high-order neighbor information from multiple receptive fields. To overcome those limitations, we propose a novel model based on multiview graph attention network, namely, scMGATGRN, to infer GRNs. scMGATGRN mainly consists of GAT, multiview, and view-level attention mechanism. GAT can extract essential features of the gene regulatory network. The multiview model can simultaneously utilize local feature information and high-order neighbor feature information of nodes in the gene regulatory network. The view-level attention mechanism dynamically adjusts the relative importance of node embedding representations and efficiently aggregates node embedding representations from two views. To verify the effectiveness of scMGATGRN, we compared its performance with 10 methods (five shallow learning algorithms and five state-of-the-art DL-based methods) on seven benchmark single-cell RNA sequencing (scRNA-seq) datasets from five cell lines (two in human and three in mouse) with four different kinds of ground-truth networks. The experimental results not only show that scMGATGRN outperforms competing methods but also demonstrate the potential of this model in inferring GRNs. The code and data of scMGATGRN are made freely available on GitHub (https://github.com/nathanyl/scMGATGRN).
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.