Prior EEG marks focused and mind-wandering mental states across trials.

IF 2.9 2区 医学 Q2 NEUROSCIENCES Cerebral cortex Pub Date : 2024-10-03 DOI:10.1093/cercor/bhae403
Chie Nakatani, Hannah Bernhard, Cees van Leeuwen
{"title":"Prior EEG marks focused and mind-wandering mental states across trials.","authors":"Chie Nakatani, Hannah Bernhard, Cees van Leeuwen","doi":"10.1093/cercor/bhae403","DOIUrl":null,"url":null,"abstract":"<p><p>Whether spontaneous or induced by a tedious task, the transition from a focused mental state to mind wandering is a complex one, possibly involving adjacent mental states and extending over minutes or even hours. This complexity cannot be captured by relying solely on subjective reports of mind wandering. To characterize the transition in a mind-wandering-inducing tone counting task, in addition we collected subjective reports of thought generation along with task performance as a measure of cognitive control and EEG measures, namely auditory probe evoked potentials (AEP) and ongoing 8-12 Hz alpha-band amplitude. We analyzed the cross-correlations between timeseries of these observations to reveal their contributions over time to the occurrence of task-focused and mind-wandering states. Thought generation and cognitive control showed overall a yoked dynamics, in which thought production increased when cognitive control decreased. Prior to mind wandering however, they became decoupled after transient increases in cognitive control-related alpha amplitude. The decoupling allows transitory mental states beyond the unidimensional focused/wandering continuum. Time lags of these effects were on the order of several minutes, with 4-10 min for that of alpha amplitude. We discuss the implications for mind wandering and related mental states, and for mind-wandering prediction applications.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhae403","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Whether spontaneous or induced by a tedious task, the transition from a focused mental state to mind wandering is a complex one, possibly involving adjacent mental states and extending over minutes or even hours. This complexity cannot be captured by relying solely on subjective reports of mind wandering. To characterize the transition in a mind-wandering-inducing tone counting task, in addition we collected subjective reports of thought generation along with task performance as a measure of cognitive control and EEG measures, namely auditory probe evoked potentials (AEP) and ongoing 8-12 Hz alpha-band amplitude. We analyzed the cross-correlations between timeseries of these observations to reveal their contributions over time to the occurrence of task-focused and mind-wandering states. Thought generation and cognitive control showed overall a yoked dynamics, in which thought production increased when cognitive control decreased. Prior to mind wandering however, they became decoupled after transient increases in cognitive control-related alpha amplitude. The decoupling allows transitory mental states beyond the unidimensional focused/wandering continuum. Time lags of these effects were on the order of several minutes, with 4-10 min for that of alpha amplitude. We discuss the implications for mind wandering and related mental states, and for mind-wandering prediction applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
先前的脑电图标记了各次试验中专注和游离的心理状态。
无论是自发的还是由繁琐的任务诱发的,从专注的精神状态到思维游离的转变都是一个复杂的过程,可能涉及相邻的精神状态,并持续数分钟甚至数小时。这种复杂性仅靠主观的思维游离报告是无法捕捉到的。为了描述诱发思维游离的音调计数任务中的过渡,我们还收集了思维产生的主观报告、作为认知控制测量的任务表现以及脑电图测量,即听觉探针诱发电位(AEP)和持续的 8-12 赫兹阿尔法波段振幅。我们分析了这些观察结果的时间序列之间的交叉相关性,以揭示它们随着时间的推移对任务专注和思维游离状态的发生所起的作用。思维产生和认知控制总体上呈现出一种轭状动态,即当认知控制下降时,思维产生增加。然而,在思维游走之前,在认知控制相关的阿尔法振幅短暂增加后,它们就会脱钩。这种解耦使得短暂的精神状态超越了单维的专注/游走连续体。这些效应的时滞约为几分钟,而阿尔法振幅的时滞为 4-10 分钟。我们讨论了精神游荡和相关精神状态以及精神游荡预测应用的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cerebral cortex
Cerebral cortex 医学-神经科学
CiteScore
6.30
自引率
8.10%
发文量
510
审稿时长
2 months
期刊介绍: Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included. The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.
期刊最新文献
Exploring common and distinct neural basis of procrastination and impulsivity through elastic net regression. Contributions of short- and long-range white matter tracts in dynamic compensation with aging. Can guilt enhance sensitivity to other's suffering? An EEG investigation into moral emotions and pain empathy. Emotional future simulations: neural and cognitive perspectives. Fear, learning, and the amygdala: a personal reflection in honor of Joseph LeDoux.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1