N4BP3 facilitates NOD2-MAPK/NF-κB pathway in inflammatory bowel disease through mediating K63-linked RIPK2 ubiquitination.

IF 6.1 2区 生物学 Q1 CELL BIOLOGY Cell Death Discovery Pub Date : 2024-10-17 DOI:10.1038/s41420-024-02213-x
Wang Jiang, Yan Zhao, Min Han, Jiafan Xu, Kun Chen, Yi Liang, Jie Yin, Jinyue Hu, Yueming Shen
{"title":"N4BP3 facilitates NOD2-MAPK/NF-κB pathway in inflammatory bowel disease through mediating K63-linked RIPK2 ubiquitination.","authors":"Wang Jiang, Yan Zhao, Min Han, Jiafan Xu, Kun Chen, Yi Liang, Jie Yin, Jinyue Hu, Yueming Shen","doi":"10.1038/s41420-024-02213-x","DOIUrl":null,"url":null,"abstract":"<p><p>The NOD2 signaling pathway, which plays an important role in the mechanisms of inflammatory bowel disease (IBD) development, has been closely associated with ubiquitination. It was revealed in this study that NOD2 receptor activation could obviously affect the expression of 19 ubiquitination-related genes, with N4BP3 being the most prominently expressed and upregulated. In addition, N4BP3 knockdown was found to reduce the mRNA levels of MDP-induced inflammatory factors, while N4BP3 overexpression elevated their mRNA levels as well as the levels of phospho-ERK1/2, phospho-JNK, phospho-P38 and phospho-NF-κB P65 proteins. Immunoprecipitation tests showed that N4BP3 could pull down RIPK2 and promote its K63-linked ubiquitination. In human tissue specimen assays and mouse experiments, we found that the expression of N4BP3 was significantly elevated in Crohn's disease (CD) patients and IBD mice, and N4BP3 knockdown reduced the dextran sulfate sodium-induced pathological score and the expression of inflammatory factors in the mouse colon tissue. In conclusion, N4BP3 is able to interact with RIPK2 and promote its K63-linked ubiquitination, to further promote the NOD2-MAPK/NF-κB pathway, thereby increasing promoting the release of inflammation factors and the degree of IBD inflammation.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"10 1","pages":"440"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487068/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-024-02213-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The NOD2 signaling pathway, which plays an important role in the mechanisms of inflammatory bowel disease (IBD) development, has been closely associated with ubiquitination. It was revealed in this study that NOD2 receptor activation could obviously affect the expression of 19 ubiquitination-related genes, with N4BP3 being the most prominently expressed and upregulated. In addition, N4BP3 knockdown was found to reduce the mRNA levels of MDP-induced inflammatory factors, while N4BP3 overexpression elevated their mRNA levels as well as the levels of phospho-ERK1/2, phospho-JNK, phospho-P38 and phospho-NF-κB P65 proteins. Immunoprecipitation tests showed that N4BP3 could pull down RIPK2 and promote its K63-linked ubiquitination. In human tissue specimen assays and mouse experiments, we found that the expression of N4BP3 was significantly elevated in Crohn's disease (CD) patients and IBD mice, and N4BP3 knockdown reduced the dextran sulfate sodium-induced pathological score and the expression of inflammatory factors in the mouse colon tissue. In conclusion, N4BP3 is able to interact with RIPK2 and promote its K63-linked ubiquitination, to further promote the NOD2-MAPK/NF-κB pathway, thereby increasing promoting the release of inflammation factors and the degree of IBD inflammation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
N4BP3 通过介导 K63 链接的 RIPK2 泛素化,促进炎症性肠病中的 NOD2-MAPK/NF-κB 通路。
在炎症性肠病(IBD)发病机制中发挥重要作用的NOD2信号通路与泛素化密切相关。本研究发现,NOD2受体激活可明显影响19个泛素化相关基因的表达,其中以N4BP3的表达和上调最为显著。此外,研究还发现,N4BP3敲除可降低MDP诱导的炎症因子的mRNA水平,而N4BP3过表达则可升高其mRNA水平以及磷酸-ERK1/2、磷酸-JNK、磷酸-P38和磷酸-NF-κB P65蛋白的水平。免疫沉淀测试表明,N4BP3 可牵引 RIPK2 并促进其与 K63 连接的泛素化。在人体组织标本检测和小鼠实验中,我们发现N4BP3在克罗恩病(CD)患者和IBD小鼠中的表达明显升高,N4BP3敲除可降低右旋糖酐硫酸钠诱导的小鼠结肠组织病理评分和炎症因子的表达。总之,N4BP3能够与RIPK2相互作用并促进其与K63连接的泛素化,进一步促进NOD2-MAPK/NF-κB通路,从而增加促进炎症因子的释放和IBD炎症的程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Death Discovery
Cell Death Discovery Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
8.30
自引率
1.40%
发文量
468
审稿时长
9 weeks
期刊介绍: Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary. Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
期刊最新文献
DUBs in Alzheimer's disease: mechanisms and therapeutic implications. Chromatin landscape dynamics during reprogramming towards human naïve and primed pluripotency reveals the divergent function of PRDM1 isoforms. NEDD4L contributes to ferroptosis and cell growth inhibition in esophageal squamous cell carcinoma by facilitating xCT ubiquitination. DDX3 is critical for female fertility via translational control in oogenesis. Therapeutic advances in the targeting of ROR1 in hematological cancers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1