Electric-Field Controlled Switchable and Efficient Separation of Radioactive Xe/Kr on Borophene: A Theoretical Study.

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL Chemphyschem Pub Date : 2025-01-14 Epub Date: 2024-11-17 DOI:10.1002/cphc.202400720
Wenxi Zhang, Mengnan Qu, Aijun Du, Qiao Sun
{"title":"Electric-Field Controlled Switchable and Efficient Separation of Radioactive Xe/Kr on Borophene: A Theoretical Study.","authors":"Wenxi Zhang, Mengnan Qu, Aijun Du, Qiao Sun","doi":"10.1002/cphc.202400720","DOIUrl":null,"url":null,"abstract":"<p><p>The efficient and reversible separation of radioactive Xe/Kr during spent fuel reprocessing is important and challenging for the rapid development of nuclear energy. In this study, we firstly report a strategy of applying an electric field on the solid adsorbent borophene to realize efficient and switchable Xe/Kr separation via a density functional theory (DFT) investigation. Based on the calculational results, the adsorption energies for Xe and Kr on borophene without an electric field are -0.25 eV and -0.18 eV, respectively, indicating that Xe and Kr can only form weak adsorption on borophene. However, by applying an electric field (0.006 a.u.) to the systems, the adsorption energies for Xe and Kr on borophene are -0.98 eV and -0.47 eV, respectively, which shows that the interaction between Xe and borophene has increased dramatically compared with that of Kr, so Xe can be separated from radioactive Xe/Kr mixtures. What's more, when the electric field is removed, desorption of Xe from the surface of borophene is exothermic without an energy barrier. The adsorbent is recyclable. In summary, this theoretical study provides novel information for experimental researches, the highly efficient Xe/Kr separation can be controlled by turning on/off the applied electric field.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400720"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400720","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The efficient and reversible separation of radioactive Xe/Kr during spent fuel reprocessing is important and challenging for the rapid development of nuclear energy. In this study, we firstly report a strategy of applying an electric field on the solid adsorbent borophene to realize efficient and switchable Xe/Kr separation via a density functional theory (DFT) investigation. Based on the calculational results, the adsorption energies for Xe and Kr on borophene without an electric field are -0.25 eV and -0.18 eV, respectively, indicating that Xe and Kr can only form weak adsorption on borophene. However, by applying an electric field (0.006 a.u.) to the systems, the adsorption energies for Xe and Kr on borophene are -0.98 eV and -0.47 eV, respectively, which shows that the interaction between Xe and borophene has increased dramatically compared with that of Kr, so Xe can be separated from radioactive Xe/Kr mixtures. What's more, when the electric field is removed, desorption of Xe from the surface of borophene is exothermic without an energy barrier. The adsorbent is recyclable. In summary, this theoretical study provides novel information for experimental researches, the highly efficient Xe/Kr separation can be controlled by turning on/off the applied electric field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电场控制硼吩上放射性 Xe/Kr 的可切换高效分离:理论研究。
在乏燃料后处理过程中高效、可逆地分离放射性 Xe/Kr 对核能的快速发展既重要又具有挑战性。在本研究中,我们通过密度泛函理论(DFT)研究,首次报道了在固体吸附剂硼吩上施加电场以实现高效、可切换的 Xe/Kr 分离的策略。根据计算结果,在没有电场的情况下,Xe 和 Kr 在硼吩上的吸附能分别为 -0.25 eV 和 -0.18 eV,这表明 Xe 和 Kr 在硼吩上只能形成弱吸附。然而,在系统中施加电场(0.006 a.u.)后,Xe 和 Kr 在硼吩上的吸附能分别为 -0.98 eV 和 -0.47 eV,这表明 Xe 和硼吩之间的相互作用比 Kr 的作用显著增强,因此 Xe 可以从放射性 Xe/Kr 混合物中分离出来。更重要的是,当电场移除时,Xe 从硼吩表面的解吸是放热的,没有能量障碍。该吸附剂可循环使用。总之,这项理论研究为实验研究提供了新的信息,通过开启/关闭外加电场可以控制 Xe/Kr 的高效分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
期刊最新文献
Dynamics of Pyrene Excimer in a Cholesteryl-based Supramolecular Host Matrix. RF Heating Effects in CEST NMR with Hyperpolarized 129Xe Considering Different Spin Exchange Kinetics and Saturation Schemes. Dissociation of hydrogen and formation of water at the (010) and (111) surfaces of orthorhombic FeNbO4. Perturbing Pentalene: Aromaticity and Antiaromaticity in a Non-alternant Polycyclic Aromatic Hydrocarbon and BN-heteroanalogues. Ground and excited state aromaticity in azulene-based helicenes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1