Halogen Substitution Strategy for Exploiting High-Performance Molecular Ferroelectrics.

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL Chemphyschem Pub Date : 2024-10-16 DOI:10.1002/cphc.202400801
Xingguang Chen, Haojie Xu, Wenjing Li, Junhua Luo, Zhihua Sun
{"title":"Halogen Substitution Strategy for Exploiting High-Performance Molecular Ferroelectrics.","authors":"Xingguang Chen, Haojie Xu, Wenjing Li, Junhua Luo, Zhihua Sun","doi":"10.1002/cphc.202400801","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular ferroelectrics are emerging as a robust family of electric-ordered materials due to their distinct structural flexibility, molecular tunability, and versatility. In recent years, diverse chemical design approaches have significantly contributed to discovering and optimizing ferroelectric performances of molecule-based ferroelectric systems. Notably, halogen substitution is one of the most effective strategies for inducing symmetry breaking and optimizing the dipole moments and potential energy barriers. In this minireview, we have summarized recent significant advances of halogen substitution strategy in molecule-based ferroelectrics, including organic-inorganic hybrids and metal-free molecular systems. Subsequently, we discuss the underlying mechanism of halogen substitution to improve ferroelectric performances, including the generation of spontaneous polarization, enhancement of Curie temperature, and bandgap engineering. Finally, the future directions in designing and modulating molecular ferroelectrics by halogen substitution strategy are also highlighted.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400801"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400801","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular ferroelectrics are emerging as a robust family of electric-ordered materials due to their distinct structural flexibility, molecular tunability, and versatility. In recent years, diverse chemical design approaches have significantly contributed to discovering and optimizing ferroelectric performances of molecule-based ferroelectric systems. Notably, halogen substitution is one of the most effective strategies for inducing symmetry breaking and optimizing the dipole moments and potential energy barriers. In this minireview, we have summarized recent significant advances of halogen substitution strategy in molecule-based ferroelectrics, including organic-inorganic hybrids and metal-free molecular systems. Subsequently, we discuss the underlying mechanism of halogen substitution to improve ferroelectric performances, including the generation of spontaneous polarization, enhancement of Curie temperature, and bandgap engineering. Finally, the future directions in designing and modulating molecular ferroelectrics by halogen substitution strategy are also highlighted.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发高性能分子铁电的卤素置换策略。
分子铁电因其独特的结构灵活性、分子可调性和多功能性,正在成为一个强大的电有序材料家族。近年来,多种化学设计方法为发现和优化分子铁电系统的铁电性能做出了重要贡献。值得注意的是,卤素取代是诱导对称性破缺、优化偶极矩和势能壁垒的最有效策略之一。在本小视图中,我们总结了卤素取代策略在分子基铁电学(包括有机-无机杂化物和无金属分子体系)中的最新重大进展。随后,我们讨论了卤素取代改善铁电性能的基本机制,包括自发极化的产生、居里温度的提高和带隙工程。最后,我们还强调了通过卤素取代策略设计和调制分子铁电体的未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
期刊最新文献
In-situ CeO2/CuO heterojunction electrocatalyst for CO2 reduction to ethylene. Activation of CH4, NH3, and N2 by Tantalum Ions, Clusters and Their Oxides: What Can Be Learnt from Studies of Ions in the Gas Phase. Exploring the Formulation and Efficacy of Phosphazene-Based Flame Retardants for Conventional Supercapacitor Electrolytes. Luminescence Mechanisms of Quaternary Zn-Ag-In-S Nanocrystals: ZnS:Ag, In or AgInS2:Zn? In Silico Screening of CO2-Dipeptide Interactions for Bioinspired Carbon Capture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1