Size Effects of Gold Nanoparticles on Surface Plasmon Resonance Assays for DNA Hybridization.

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL Chemphyschem Pub Date : 2024-10-21 DOI:10.1002/cphc.202400484
Qing Kang, Zhen Li, Deming Yan, Tianbao Dong, Chaowei Han, Meng Jiang, Pengcheng Wang, Yanhui Wang, Wenjuan Guo, Feimeng Zhou
{"title":"Size Effects of Gold Nanoparticles on Surface Plasmon Resonance Assays for DNA Hybridization.","authors":"Qing Kang, Zhen Li, Deming Yan, Tianbao Dong, Chaowei Han, Meng Jiang, Pengcheng Wang, Yanhui Wang, Wenjuan Guo, Feimeng Zhou","doi":"10.1002/cphc.202400484","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in signal amplifiers, such as biofunctionalized gold nanoparticles (AuNPs) have improved the surface plasmon resonance (SPR) performance. However, the correlation between the sizes of DNA-Au conjugates and the SPR chips remains elusive. We investigated how the size of AuNPs functioned with DNA detection probes (D-AuNPs) affect SPR signals in sandwich DNA hybridization assays. The effects of three sizes (5, 13, and 29 nm) of D-AuNPs with an equal surface probe density were systematically compared to delineate the relationship between signal amplification and steric hindrance. Sporadically adsorbed target DNA on sparse capture probe-coated chips led to a growth of signal amplification with larger D-AuNPs. In contrast, on dense capture probe-coated SPR chips, when the target DNA concentration was above 1.5 nM, the medium-sized 13-nm AuNPs displayed 1.7- and 1.3-fold enhancement factors than 5-nm and 29-nm ones, respectively. Our results indicate the steric hindrance disturbs the capture of D-AuNPs on dense target DNA-modified chips, rendering the surface density of captured D-AuNPs a determining factor of the sensor response. Alternatively, the sensor sensitivity to D-AuNP surface density is crucial on chips with sparse target DNA. These insights should stimulate and guide future research on surface functionalization toward SPR sensors and AuNPs.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400484","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in signal amplifiers, such as biofunctionalized gold nanoparticles (AuNPs) have improved the surface plasmon resonance (SPR) performance. However, the correlation between the sizes of DNA-Au conjugates and the SPR chips remains elusive. We investigated how the size of AuNPs functioned with DNA detection probes (D-AuNPs) affect SPR signals in sandwich DNA hybridization assays. The effects of three sizes (5, 13, and 29 nm) of D-AuNPs with an equal surface probe density were systematically compared to delineate the relationship between signal amplification and steric hindrance. Sporadically adsorbed target DNA on sparse capture probe-coated chips led to a growth of signal amplification with larger D-AuNPs. In contrast, on dense capture probe-coated SPR chips, when the target DNA concentration was above 1.5 nM, the medium-sized 13-nm AuNPs displayed 1.7- and 1.3-fold enhancement factors than 5-nm and 29-nm ones, respectively. Our results indicate the steric hindrance disturbs the capture of D-AuNPs on dense target DNA-modified chips, rendering the surface density of captured D-AuNPs a determining factor of the sensor response. Alternatively, the sensor sensitivity to D-AuNP surface density is crucial on chips with sparse target DNA. These insights should stimulate and guide future research on surface functionalization toward SPR sensors and AuNPs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金纳米粒子对 DNA 杂交表面等离子共振检测的尺寸效应
生物功能化金纳米粒子(AuNPs)等信号放大器的最新进展提高了表面等离子体共振(SPR)的性能。然而,DNA-金共轭物的尺寸与 SPR 芯片之间的相关性仍然难以捉摸。我们研究了与 DNA 检测探针(D-AuNPs)一起发挥作用的 AuNPs 的尺寸如何影响夹心 DNA 杂交检测中的 SPR 信号。我们系统地比较了表面探针密度相同的三种尺寸(5、13 和 29 nm)D-AuNPs 的影响,以确定信号放大与立体阻碍之间的关系。在稀疏的捕获探针涂层芯片上零星吸附靶 DNA 会导致较大的 D-AuNPs 信号放大率增加。相反,在密集捕获探针涂层的 SPR 芯片上,当目标 DNA 浓度超过 1.5 nM 时,中等尺寸的 13-nm AuNPs 比 5-nm 和 29-nm AuNPs 的增强因子分别高出 1.7 倍和 1.3 倍。我们的研究结果表明,立体阻碍干扰了高密度靶 DNA 改性芯片上 D-AuNPs 的捕获,使捕获的 D-AuNPs 的表面密度成为传感器响应的决定因素。另外,在稀疏靶 DNA 的芯片上,传感器对 D-AuNP 表面密度的敏感性也至关重要。这些见解应能激励和指导未来针对 SPR 传感器和 AuNPs 的表面功能化研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
期刊最新文献
Electrophoretic deposition of carbon-ionomer layers on proton conducting membranes. Exploring Gas Evolution Oscillators: Mechanisms and Applications. Meta-connected Oligo-Azobenzenes Outperform Their Para Counterparts. Absence of the third linker domain of ApcE subunit in phycobilisome from Synechocystis 6803 reduces rods-to-core excitation energy transfer. Metal-Metal Bonding in Tri-Actinide Clusters: A DFT Study of [An3Cl6] z (z = 1-6) and [An3Cl6Cp3] z (z = -2- +3; An = Ac, Th, Pa, U, Np, Pu).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1