{"title":"Unveiling the Inhibitory Effect of Magnolol in the Aggregation of Human Calcitonin (hCT): A Comprehensive In-Silico Study.","authors":"Mira Jhawar, Sandip Paul","doi":"10.1002/cphc.202400679","DOIUrl":null,"url":null,"abstract":"<p><p>Amyloid fibril formation by some peptides leads to several neurogenetic disorders. This limits their biological activity and increases cytotoxicity. Human calcitonin (hCT), 32 residue containing peptide, known for regulating calcium and phosphate concentration in the blood tends to form amyloids in aqueous medium. Polyphenols are very effective in inhibiting fibril formation. As part of our research, we have taken Magnolol (Mag), which is extracted from the Chinese herb Magnolia officinalis. To evaluate its effectiveness as an inhibitor in preventing hCT aggregation, we conducted an all-atom classical molecular dynamics simulation with varying concentrations of Mag. In presence of Mag, hCT maintains its helical conformation in higher order. Magnolol primarily interacts with hCT via van der Waals interaction. Asp15 residue of hCT, resides in the amyloid region (D<sub>15</sub>FNKF<sub>19</sub>) forms strong hydrogen bonding interaction with Mag. Moreover, aromatic residues of hCT interact with Mag through π-π stacking interactions. Our work gives insights into the molecular mechanism of Magnolol in the inhibition of hCT fibril formation to use it as a potential candidate for medicinal purpose.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400679"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400679","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Amyloid fibril formation by some peptides leads to several neurogenetic disorders. This limits their biological activity and increases cytotoxicity. Human calcitonin (hCT), 32 residue containing peptide, known for regulating calcium and phosphate concentration in the blood tends to form amyloids in aqueous medium. Polyphenols are very effective in inhibiting fibril formation. As part of our research, we have taken Magnolol (Mag), which is extracted from the Chinese herb Magnolia officinalis. To evaluate its effectiveness as an inhibitor in preventing hCT aggregation, we conducted an all-atom classical molecular dynamics simulation with varying concentrations of Mag. In presence of Mag, hCT maintains its helical conformation in higher order. Magnolol primarily interacts with hCT via van der Waals interaction. Asp15 residue of hCT, resides in the amyloid region (D15FNKF19) forms strong hydrogen bonding interaction with Mag. Moreover, aromatic residues of hCT interact with Mag through π-π stacking interactions. Our work gives insights into the molecular mechanism of Magnolol in the inhibition of hCT fibril formation to use it as a potential candidate for medicinal purpose.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.