David Morales-Morales, Antonino Arenaza-Corona, Paola Sánchez-Portillo, Lucero González-Sebastián, Arturo Sánchez-Mora, Brian Monroy-Torres, Teresa Ramírez-Apan, Nicolás Puentes-Díaz, Jorge Alí-Torres, Victor Barba, Viviana Reyes-Marquez
{"title":"Water-Soluble Curcumin Derivatives Including Aza-Crown Ether Macrocycles as Enhancers of their Cytotoxic Activity.","authors":"David Morales-Morales, Antonino Arenaza-Corona, Paola Sánchez-Portillo, Lucero González-Sebastián, Arturo Sánchez-Mora, Brian Monroy-Torres, Teresa Ramírez-Apan, Nicolás Puentes-Díaz, Jorge Alí-Torres, Victor Barba, Viviana Reyes-Marquez","doi":"10.1002/cbdv.202402083","DOIUrl":null,"url":null,"abstract":"<p><p>The synthesis of three novel curcumin derivative compounds, featuring aza-crown ether macrocycles of various sizes (aza-12-crown-4, aza-15-crown-5, and aza-18-crown-6), is described. The incorporation of these aza-crown macrocycles significantly enhances their water solubility, positioning them as groundbreaking instances of curcumin derivatives that are fully soluble in aqueous environments. These curcumin ligands (L1, L2, and L3) were then reacted with zinc acetate to afford the coordination metal complexes (L1-Zn, L2-Zn, and L3-Zn). Comprehensive characterization of all compounds was achieved using various analytical techniques, including 1D and 2D NMR spectroscopy, ATR-FTIR spectroscopy, mass spectrometry (ESI+), elemental analysis and UV-Vis spectroscopy. The in vitro cytotoxic activity of both, ligands and complexes were evaluated on three human cancer cell lines (U-251, MCF-7, and SK-LU-1). Compared to conventional curcumin, these compounds demonstrated improved antiproliferative potential. Additionally, a wound healing assay was conducted to assess their antimigration properties. The obtained results suggest that these modifications to the curcumin structure represent a promising approach for developing therapeutic agents with enhanced cytotoxic properties.</p>","PeriodicalId":9878,"journal":{"name":"Chemistry & Biodiversity","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry & Biodiversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cbdv.202402083","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The synthesis of three novel curcumin derivative compounds, featuring aza-crown ether macrocycles of various sizes (aza-12-crown-4, aza-15-crown-5, and aza-18-crown-6), is described. The incorporation of these aza-crown macrocycles significantly enhances their water solubility, positioning them as groundbreaking instances of curcumin derivatives that are fully soluble in aqueous environments. These curcumin ligands (L1, L2, and L3) were then reacted with zinc acetate to afford the coordination metal complexes (L1-Zn, L2-Zn, and L3-Zn). Comprehensive characterization of all compounds was achieved using various analytical techniques, including 1D and 2D NMR spectroscopy, ATR-FTIR spectroscopy, mass spectrometry (ESI+), elemental analysis and UV-Vis spectroscopy. The in vitro cytotoxic activity of both, ligands and complexes were evaluated on three human cancer cell lines (U-251, MCF-7, and SK-LU-1). Compared to conventional curcumin, these compounds demonstrated improved antiproliferative potential. Additionally, a wound healing assay was conducted to assess their antimigration properties. The obtained results suggest that these modifications to the curcumin structure represent a promising approach for developing therapeutic agents with enhanced cytotoxic properties.
期刊介绍:
Chemistry & Biodiversity serves as a high-quality publishing forum covering a wide range of biorelevant topics for a truly international audience. This journal publishes both field-specific and interdisciplinary contributions on all aspects of biologically relevant chemistry research in the form of full-length original papers, short communications, invited reviews, and commentaries. It covers all research fields straddling the border between the chemical and biological sciences, with the ultimate goal of broadening our understanding of how nature works at a molecular level.
Since 2017, Chemistry & Biodiversity is published in an online-only format.