{"title":"Rigorously proven chaos in chemical kinetics.","authors":"M Susits, J Tóth","doi":"10.1063/5.0206749","DOIUrl":null,"url":null,"abstract":"<p><p>This study addresses a longstanding question regarding the mathematical proof of chaotic behavior in kinetic differential equations. Following the numerous numerical and experimental results in the past 50 years, we introduce two formal chemical reactions that rigorously demonstrate this behavior. Our approach involves transforming chaotic equations into kinetic differential equations and then realizing them through formal chemical reactions. The findings present a novel perspective on chaotic dynamics within chemical kinetics, thereby resolving a longstanding open problem.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0206749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses a longstanding question regarding the mathematical proof of chaotic behavior in kinetic differential equations. Following the numerous numerical and experimental results in the past 50 years, we introduce two formal chemical reactions that rigorously demonstrate this behavior. Our approach involves transforming chaotic equations into kinetic differential equations and then realizing them through formal chemical reactions. The findings present a novel perspective on chaotic dynamics within chemical kinetics, thereby resolving a longstanding open problem.