{"title":"Modelling freckles and spurious grain formation in directionally solidified superalloy castings","authors":"Haijie Zhang, Yunxing Zhao, Wei Xiong, Dexin Ma, Andreas Ludwig, Abdellah Kharicha, Menghuai Wu","doi":"10.1038/s43246-024-00672-4","DOIUrl":null,"url":null,"abstract":"Segregation channels with misoriented spurious grains, known as freckles, are an unacceptable casting defect in superalloy turbine blades. A digital-twin method to predict segregation channels was proposed in our previous studies; however, the formation of spurious grains was ignored. Here, we extend the digital twin methodology by incorporating dendrite fragmentation, which is recognized as the predominant mechanism in the formation of spurious grains. The flow-induced fragmentation process has been refined to account for the timing of dendrite pinch-off. A three-phase mixed columnar-equiaxed solidification model was used to track the motion of the crystal fragments. Directional solidification experiments for superalloy casting were conducted in an industrial-scale Bridgman furnace, and the distribution of spurious grains in the freckles was metallographically analysed. Excellent simulation-experiment-agreement was achieved. Based on this study, the formation of spurious grains within the segregation channels is mainly caused by the flow-driven fragmentation mechanism. Experimentally measured freckles can be reproduced only if the timing of the dendrite pinch-off is considered. Defect-free castings are vital to the structural integrity of superalloys used in aerospace. Here, a digital twin method is developed for modelling spurious grain formation and segregation channels in directionally solidified superalloys.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-12"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489085/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00672-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Segregation channels with misoriented spurious grains, known as freckles, are an unacceptable casting defect in superalloy turbine blades. A digital-twin method to predict segregation channels was proposed in our previous studies; however, the formation of spurious grains was ignored. Here, we extend the digital twin methodology by incorporating dendrite fragmentation, which is recognized as the predominant mechanism in the formation of spurious grains. The flow-induced fragmentation process has been refined to account for the timing of dendrite pinch-off. A three-phase mixed columnar-equiaxed solidification model was used to track the motion of the crystal fragments. Directional solidification experiments for superalloy casting were conducted in an industrial-scale Bridgman furnace, and the distribution of spurious grains in the freckles was metallographically analysed. Excellent simulation-experiment-agreement was achieved. Based on this study, the formation of spurious grains within the segregation channels is mainly caused by the flow-driven fragmentation mechanism. Experimentally measured freckles can be reproduced only if the timing of the dendrite pinch-off is considered. Defect-free castings are vital to the structural integrity of superalloys used in aerospace. Here, a digital twin method is developed for modelling spurious grain formation and segregation channels in directionally solidified superalloys.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.