{"title":"Smart monitoring solution for dengue infection control: A digital twin-inspired approach","authors":"","doi":"10.1016/j.cmpb.2024.108459","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective:</h3><div>In the realm of smart healthcare, precise monitoring and prediction services are crucial for mitigating the impact of infectious diseases. This study introduces an innovative digital twin technology-inspired monitoring architecture that employs a similarity-based hybrid modeling scheme to significantly enhance accuracy in the smart healthcare domain. The research also delves into the potential of IoT technology in delivering advanced technological healthcare solutions, with a specific focus on the rapid expansion of dengue fever.</div></div><div><h3>Methods:</h3><div>The proposed digital twin-inspired healthcare system is designed to proactively combat the spread of dengue virus by enabling ubiquitous monitoring and forecasting of individuals’ susceptibility to dengue infection. The system utilizes digital twin technology to observe the status of healthcare and generate likely predictions about the vulnerability to the virus by employing k-means Clustering and Artificial Neural Networks.</div></div><div><h3>Results:</h3><div>The proposed system has been validated and its effectiveness has been demonstrated through experimental evaluation using carefully defined methods. The results of the experimental assessment confirm that the system performs optimally in terms of Temporal Delay (14.15 s), Classification Accuracy (92.86%), Sensitivity (92.43%), Specificity (91.52%), F-measure (90.86%), and Prediction Effectiveness. Moreover, by integrating a hybrid model that corrects errors in physics-based predictions employing a model for error correction driven by data, this approach has demonstrated a noteworthy 48% reduction in prediction errors, particularly in health monitoring scenarios.</div></div><div><h3>Conclusions:</h3><div>The digital twin-inspired healthcare system proposed in this study can assist healthcare providers in assessing the health vulnerability of the dengue virus, thereby reducing the likelihood of long-term or catastrophic health consequences. The integration of a hybrid modeling approach and the utilization of IoT technology has shown promising results in enhancing the accuracy and effectiveness of smart health monitoring and prediction services.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260724004528","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Objective:
In the realm of smart healthcare, precise monitoring and prediction services are crucial for mitigating the impact of infectious diseases. This study introduces an innovative digital twin technology-inspired monitoring architecture that employs a similarity-based hybrid modeling scheme to significantly enhance accuracy in the smart healthcare domain. The research also delves into the potential of IoT technology in delivering advanced technological healthcare solutions, with a specific focus on the rapid expansion of dengue fever.
Methods:
The proposed digital twin-inspired healthcare system is designed to proactively combat the spread of dengue virus by enabling ubiquitous monitoring and forecasting of individuals’ susceptibility to dengue infection. The system utilizes digital twin technology to observe the status of healthcare and generate likely predictions about the vulnerability to the virus by employing k-means Clustering and Artificial Neural Networks.
Results:
The proposed system has been validated and its effectiveness has been demonstrated through experimental evaluation using carefully defined methods. The results of the experimental assessment confirm that the system performs optimally in terms of Temporal Delay (14.15 s), Classification Accuracy (92.86%), Sensitivity (92.43%), Specificity (91.52%), F-measure (90.86%), and Prediction Effectiveness. Moreover, by integrating a hybrid model that corrects errors in physics-based predictions employing a model for error correction driven by data, this approach has demonstrated a noteworthy 48% reduction in prediction errors, particularly in health monitoring scenarios.
Conclusions:
The digital twin-inspired healthcare system proposed in this study can assist healthcare providers in assessing the health vulnerability of the dengue virus, thereby reducing the likelihood of long-term or catastrophic health consequences. The integration of a hybrid modeling approach and the utilization of IoT technology has shown promising results in enhancing the accuracy and effectiveness of smart health monitoring and prediction services.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.