Using non-inferiority test of proportions in design of randomized non-inferiority trials with time-to-event endpoint with a focus on low-event-rate setting.
{"title":"Using non-inferiority test of proportions in design of randomized non-inferiority trials with time-to-event endpoint with a focus on low-event-rate setting.","authors":"Lingyun Ji, Todd A Alonzo","doi":"10.1177/17407745241284786","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>For cancers with low incidence, low event rates, and a time-to-event endpoint, a randomized non-inferiority trial designed based on the logrank test can require a large sample size with significantly prolonged enrollment duration, making such a non-inferiority trial not feasible. This article evaluates a design based on a non-inferiority test of proportions, compares its required sample size to the non-inferiority logrank test, assesses whether there are scenarios for which a non-inferiority test of proportions can be more efficient, and provides guidelines in usage of a non-inferiority test of proportions.</p><p><strong>Methods: </strong>This article describes the sample size calculation for a randomized non-inferiority trial based on a non-inferiority logrank test or a non-inferiority test of proportions. The sample size required by the two design methods are compared for a wide range of scenarios, varying the underlying Weibull survival functions, the non-inferiority margin, and loss to follow-up rate.</p><p><strong>Results: </strong>Our results showed that there are scenarios for which the non-inferiority test of proportions can have significantly reduced sample size. Specifically, the non-inferiority test of proportions can be considered for cancers with more than 80% long-term survival rate. We provide guidance in choice of this design approach based on parameters of the Weibull survival functions, the non-inferiority margin, and loss to follow-up rate.</p><p><strong>Conclusion: </strong>For cancers with low incidence and low event rates, a non-inferiority trial based on the logrank test is not feasible due to its large required sample size and prolonged enrollment duration. The use of a non-inferiority test of proportions can make a randomized non-inferiority Phase III trial feasible.</p>","PeriodicalId":10685,"journal":{"name":"Clinical Trials","volume":" ","pages":"17407745241284786"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Trials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17407745241284786","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background/aims: For cancers with low incidence, low event rates, and a time-to-event endpoint, a randomized non-inferiority trial designed based on the logrank test can require a large sample size with significantly prolonged enrollment duration, making such a non-inferiority trial not feasible. This article evaluates a design based on a non-inferiority test of proportions, compares its required sample size to the non-inferiority logrank test, assesses whether there are scenarios for which a non-inferiority test of proportions can be more efficient, and provides guidelines in usage of a non-inferiority test of proportions.
Methods: This article describes the sample size calculation for a randomized non-inferiority trial based on a non-inferiority logrank test or a non-inferiority test of proportions. The sample size required by the two design methods are compared for a wide range of scenarios, varying the underlying Weibull survival functions, the non-inferiority margin, and loss to follow-up rate.
Results: Our results showed that there are scenarios for which the non-inferiority test of proportions can have significantly reduced sample size. Specifically, the non-inferiority test of proportions can be considered for cancers with more than 80% long-term survival rate. We provide guidance in choice of this design approach based on parameters of the Weibull survival functions, the non-inferiority margin, and loss to follow-up rate.
Conclusion: For cancers with low incidence and low event rates, a non-inferiority trial based on the logrank test is not feasible due to its large required sample size and prolonged enrollment duration. The use of a non-inferiority test of proportions can make a randomized non-inferiority Phase III trial feasible.
期刊介绍:
Clinical Trials is dedicated to advancing knowledge on the design and conduct of clinical trials related research methodologies. Covering the design, conduct, analysis, synthesis and evaluation of key methodologies, the journal remains on the cusp of the latest topics, including ethics, regulation and policy impact.