Deep genetic substructure within bonobos.

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Biology Pub Date : 2024-11-18 Epub Date: 2024-10-15 DOI:10.1016/j.cub.2024.09.043
Sojung Han, Cesare de Filippo, Genís Parra, Juan Ramon Meneu, Romain Laurent, Peter Frandsen, Christina Hvilsom, Ilan Gronau, Tomas Marques-Bonet, Martin Kuhlwilm, Aida M Andrés
{"title":"Deep genetic substructure within bonobos.","authors":"Sojung Han, Cesare de Filippo, Genís Parra, Juan Ramon Meneu, Romain Laurent, Peter Frandsen, Christina Hvilsom, Ilan Gronau, Tomas Marques-Bonet, Martin Kuhlwilm, Aida M Andrés","doi":"10.1016/j.cub.2024.09.043","DOIUrl":null,"url":null,"abstract":"<p><p>Establishing the genetic and geographic structure of populations is fundamental, both to understand their evolutionary past and preserve their future. Nevertheless, the patterns of genetic population structure are unknown for most endangered species. This is the case for bonobos (Pan paniscus), which, together with chimpanzees (Pan troglodytes), are humans' closest living relatives. Chimpanzees live across equatorial Africa and are classified into four subspecies,<sup>1</sup> with some genetic population substructure even within subspecies. Conversely, bonobos live exclusively in the Democratic Republic of Congo and are considered a homogeneous group with low genetic diversity,<sup>2</sup> despite some population structure inferred from mtDNA. Nevertheless, mtDNA aside, their genetic structure remains unknown, hampering our understanding of the species and conservation efforts. Mapping bonobo genetic diversity in space is, however, challenging because, being endangered, only non-invasive sampling is possible for wild individuals. Here, we jointly analyze the exomes and mtDNA from 20 wild-born bonobos, the whole genomes of 10 captive bonobos, and the mtDNA of 136 wild individuals. We identify three genetically distinct bonobo groups of inferred Central, Western, and Far-Western geographic origin within the bonobo range. We estimate the split time between the central and western populations to be ∼145,000 years ago and genetic differentiation to be in the order of that of the closest chimpanzee subspecies. Furthermore, our estimated long-term N<sub>e</sub> for Far-West (∼3,000) is among the lowest estimated for any great ape lineage. Our results highlight the need to attend to the bonobo substructure, both in terms of research and conservation.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"5341-5348.e3"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.09.043","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Establishing the genetic and geographic structure of populations is fundamental, both to understand their evolutionary past and preserve their future. Nevertheless, the patterns of genetic population structure are unknown for most endangered species. This is the case for bonobos (Pan paniscus), which, together with chimpanzees (Pan troglodytes), are humans' closest living relatives. Chimpanzees live across equatorial Africa and are classified into four subspecies,1 with some genetic population substructure even within subspecies. Conversely, bonobos live exclusively in the Democratic Republic of Congo and are considered a homogeneous group with low genetic diversity,2 despite some population structure inferred from mtDNA. Nevertheless, mtDNA aside, their genetic structure remains unknown, hampering our understanding of the species and conservation efforts. Mapping bonobo genetic diversity in space is, however, challenging because, being endangered, only non-invasive sampling is possible for wild individuals. Here, we jointly analyze the exomes and mtDNA from 20 wild-born bonobos, the whole genomes of 10 captive bonobos, and the mtDNA of 136 wild individuals. We identify three genetically distinct bonobo groups of inferred Central, Western, and Far-Western geographic origin within the bonobo range. We estimate the split time between the central and western populations to be ∼145,000 years ago and genetic differentiation to be in the order of that of the closest chimpanzee subspecies. Furthermore, our estimated long-term Ne for Far-West (∼3,000) is among the lowest estimated for any great ape lineage. Our results highlight the need to attend to the bonobo substructure, both in terms of research and conservation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
倭黑猩猩的深层基因亚结构。
确定种群的遗传和地理结构对于了解其进化历史和保护其未来都至关重要。然而,大多数濒危物种的遗传种群结构模式尚不清楚。倭黑猩猩(Pan paniscus)就是这种情况,它们与黑猩猩(Pan troglodytes)是人类的近亲。黑猩猩生活在赤道非洲各地,分为四个亚种1 ,即使在亚种内部也有一些遗传种群亚结构。相反,倭黑猩猩只生活在刚果民主共和国,尽管从 mtDNA 中可以推断出一些种群结构,但被认为是一个遗传多样性较低的同质群体2。然而,除mtDNA外,倭黑猩猩的遗传结构仍然未知,这阻碍了我们对该物种的了解和保护工作。然而,绘制倭黑猩猩的空间遗传多样性图谱具有挑战性,因为倭黑猩猩是濒危物种,只能对野生个体进行非侵入性采样。在这里,我们联合分析了 20 只野生倭黑猩猩的外显子组和 mtDNA、10 只圈养倭黑猩猩的全基因组以及 136 只野生个体的 mtDNA。我们在倭黑猩猩分布区内发现了三个基因上截然不同的倭黑猩猩群体,推断其地理起源分别为中部、西部和远西。我们估计中部和西部种群的分裂时间为 14.5 万年前,遗传分化程度与最接近的黑猩猩亚种相当。此外,我们对远西种群的长期Ne值(∼3,000)的估计是所有类人猿种群中最低的。我们的研究结果凸显了在研究和保护方面关注倭黑猩猩亚结构的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
期刊最新文献
Australia's recently established predators restore complexity to food webs simplified by extinction. Deep-time origin of tympanic hearing in crown reptiles. Deep genetic substructure within bonobos. Inflation-induced motility for long-distance vertical migration. Mosaic evolution of a learning and memory circuit in Heliconiini butterflies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1