The seed germination and seedling phytotoxicity of decabromodiphenyl ethane to tall fescue under citric acid amendment.

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Environmental Geochemistry and Health Pub Date : 2024-10-14 DOI:10.1007/s10653-024-02255-1
Ruiyuan Liu, Hui Xie
{"title":"The seed germination and seedling phytotoxicity of decabromodiphenyl ethane to tall fescue under citric acid amendment.","authors":"Ruiyuan Liu, Hui Xie","doi":"10.1007/s10653-024-02255-1","DOIUrl":null,"url":null,"abstract":"<p><p>The novel brominated flame retardant decabromodiphenyl ethane (DBDPE) has biological toxicity, persistence, long-range migration and bioaccumulation ability. However, there is currently little research on the phytotoxicity of DBDPE in plants. The perennial herbaceous plant tall fescue (Festuca elata Keng ex E. B. Alexeev) was selected as the model organism for use in seed germination experiments, and the phytotoxicity of DBDPE in the soil of tall fescue was studied. The results indicated that DBDPE had a significant effect on the germination and growth of tall fescue seedlings. Citric acid reduced the stress caused by DBDPE in plants, effectively alleviating the phytotoxicity of DBDPE in tall fescue. The root vitality and protein content significantly increased after the application of citric acid, increasing by 74.93-183.90%, 146.44-147.67%, respectively. The contents of proline and soluble sugars significantly decreased after the application of citric acid, decreasing by 45.18-59.69% and 23.03%, respectively (P < 0.05). There was no significant difference in superoxide dismutase (SOD) or peroxidase (POD) activity in tall fescue seedlings, and the catalase (CAT) activity and malondialdehyde (MDA) content were significantly lower after the application of citric acid, decreasing by 64.62-67.91% and 29.10-49.80%, respectively (P < 0.05). Tall fescue seedlings bioaccumulated DBDPE, with biological concentration factors (BCFs) ranging from 4.28 to 18.38 and transfer factors (TFs) ranging from 0.43 to 0.54. This study provides theoretical support for the study of the toxicity of DBDPE to plants and offers a research foundation for exploring the phytoremediation of DBDPE-contaminated soil by tall fescue.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 11","pages":"473"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02255-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The novel brominated flame retardant decabromodiphenyl ethane (DBDPE) has biological toxicity, persistence, long-range migration and bioaccumulation ability. However, there is currently little research on the phytotoxicity of DBDPE in plants. The perennial herbaceous plant tall fescue (Festuca elata Keng ex E. B. Alexeev) was selected as the model organism for use in seed germination experiments, and the phytotoxicity of DBDPE in the soil of tall fescue was studied. The results indicated that DBDPE had a significant effect on the germination and growth of tall fescue seedlings. Citric acid reduced the stress caused by DBDPE in plants, effectively alleviating the phytotoxicity of DBDPE in tall fescue. The root vitality and protein content significantly increased after the application of citric acid, increasing by 74.93-183.90%, 146.44-147.67%, respectively. The contents of proline and soluble sugars significantly decreased after the application of citric acid, decreasing by 45.18-59.69% and 23.03%, respectively (P < 0.05). There was no significant difference in superoxide dismutase (SOD) or peroxidase (POD) activity in tall fescue seedlings, and the catalase (CAT) activity and malondialdehyde (MDA) content were significantly lower after the application of citric acid, decreasing by 64.62-67.91% and 29.10-49.80%, respectively (P < 0.05). Tall fescue seedlings bioaccumulated DBDPE, with biological concentration factors (BCFs) ranging from 4.28 to 18.38 and transfer factors (TFs) ranging from 0.43 to 0.54. This study provides theoretical support for the study of the toxicity of DBDPE to plants and offers a research foundation for exploring the phytoremediation of DBDPE-contaminated soil by tall fescue.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
十溴二苯乙烷在柠檬酸改良条件下对高羊茅的种子萌发和幼苗植物毒性。
新型溴化阻燃剂十溴二苯乙烷(DBDPE)具有生物毒性、持久性、远距离迁移和生物累积能力。然而,目前有关十溴二苯乙烷对植物毒性的研究还很少。本文选择了多年生草本植物高羊茅(Festuca elata Keng ex E. B. Alexeev)作为模型生物进行种子萌发实验,并研究了 DBDPE 在高羊茅土壤中的植物毒性。结果表明,DBDPE 对高羊茅幼苗的萌发和生长有显著影响。柠檬酸降低了 DBDPE 对植物造成的胁迫,有效缓解了 DBDPE 对高羊茅的植物毒性。施用柠檬酸后,根系活力和蛋白质含量明显增加,分别增加了 74.93-183.90% 和 146.44-147.67%。施用柠檬酸后,脯氨酸和可溶性糖的含量明显降低,分别降低了 45.18%-59.69%和 23.03%(P<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
期刊最新文献
Distribution, assessment, and causality analysis of soil heavy metals pollution in complex contaminated sites: a case study of a chemical plant. Hydrochemical characteristics, cross-layer pollution and environmental health risk of groundwater system in coal mine area: a case study of Jiangzhuang coal mine. Environmental microplastic and phthalate esters co-contamination, interrelationships, co-toxicity and mechanisms. A review. Cultivable bacteria contribute to the removal of diclofenac and naproxen mix in a constructed wetland with Typha latifolia. Mercury in saliva, milk, and hair of nursing mothers in southeastern Iranian mothers: levels, distribution and risk assessment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1