Geisa Nascimento Barbalho , Stefan Brugger , Christian Raab , Jara-Sophie Lechner , Taís Gratieri , Cornelia M. Keck , Ilva D. Rupenthal , Priyanka Agarwal
{"title":"Development of transferosomes for topical ocular drug delivery of curcumin","authors":"Geisa Nascimento Barbalho , Stefan Brugger , Christian Raab , Jara-Sophie Lechner , Taís Gratieri , Cornelia M. Keck , Ilva D. Rupenthal , Priyanka Agarwal","doi":"10.1016/j.ejpb.2024.114535","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Transferosomes (TFS) are ultra-deformable elastic bilayer vesicles that have previously been used to enhance gradient driven penetration through the skin. This study aimed to evaluate the potential of TFS for topical ocular drug delivery and to compare their penetration enhancing properties in different ocular tissues.</div></div><div><h3>Methods</h3><div>Curcumin-loaded TFS were prepared using Tween 80 as the edge activator. Drug release and precorneal retention of the TFS were evaluated in vitro, while their ocular biocompatibility and bioavailability were evaluated ex vivo using a curcumin solution in medium chain triglycerides as the oily control.</div></div><div><h3>Results</h3><div>The TFS had a narrow size distribution with a particle size less than 150 nm and an entrapment efficiency greater than 99.96 %. Burst release from the TFS was minimal and the formulation showed good corneal biocompatibility. Moreover, enhanced corneal and conjunctival drug penetration with significantly greater and deeper drug delivery was observed with TFS.</div></div><div><h3>Conclusion</h3><div>TFS offer a promising platform for ocular delivery of hydrophobic drugs. This study, for the first time, elucidates the effect of tissue morphology and osmotic gradients on drug penetration in different ocular tissues.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"205 ","pages":"Article 114535"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939641124003618","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Transferosomes (TFS) are ultra-deformable elastic bilayer vesicles that have previously been used to enhance gradient driven penetration through the skin. This study aimed to evaluate the potential of TFS for topical ocular drug delivery and to compare their penetration enhancing properties in different ocular tissues.
Methods
Curcumin-loaded TFS were prepared using Tween 80 as the edge activator. Drug release and precorneal retention of the TFS were evaluated in vitro, while their ocular biocompatibility and bioavailability were evaluated ex vivo using a curcumin solution in medium chain triglycerides as the oily control.
Results
The TFS had a narrow size distribution with a particle size less than 150 nm and an entrapment efficiency greater than 99.96 %. Burst release from the TFS was minimal and the formulation showed good corneal biocompatibility. Moreover, enhanced corneal and conjunctival drug penetration with significantly greater and deeper drug delivery was observed with TFS.
Conclusion
TFS offer a promising platform for ocular delivery of hydrophobic drugs. This study, for the first time, elucidates the effect of tissue morphology and osmotic gradients on drug penetration in different ocular tissues.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.