Liva Pfuhler, Silina Awad, William Skipper, Jeremy Lavietes, Thomas Sah, Kayla Ho, Radha Ivanova, Amy Cooke
{"title":"The autophagy initiation factor ATG13 mRNA is stabilized by the RNA-binding protein YBX3.","authors":"Liva Pfuhler, Silina Awad, William Skipper, Jeremy Lavietes, Thomas Sah, Kayla Ho, Radha Ivanova, Amy Cooke","doi":"10.1002/1873-3468.15035","DOIUrl":null,"url":null,"abstract":"<p><p>Autophagy, a highly conserved form of cellular recycling, is essential for cellular homeostasis. Its dysregulation has been linked to neurodegenerative diseases and various cancers, including breast cancer. We set out to determine if the RNA-binding protein (RBP) YBX3 regulates autophagy mRNAs, as previous findings suggest YBX3 depletion reduces distinct autophagy transcripts. We found that YBX3 interacts with and stabilizes the mRNA of the autophagy initiation factor ATG13 in HeLa, which in turn increases ATG13 protein expression. We have shown that this requires the 3' untranslated region (UTR) of ATG13 and occurs in other human cell lines, including HEK293, HepG2, and HCT116. Together, our data suggest a novel regulatory role for YBX3 of autophagy initiation through posttranscriptional control of ATG13 mRNA stability.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.15035","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Autophagy, a highly conserved form of cellular recycling, is essential for cellular homeostasis. Its dysregulation has been linked to neurodegenerative diseases and various cancers, including breast cancer. We set out to determine if the RNA-binding protein (RBP) YBX3 regulates autophagy mRNAs, as previous findings suggest YBX3 depletion reduces distinct autophagy transcripts. We found that YBX3 interacts with and stabilizes the mRNA of the autophagy initiation factor ATG13 in HeLa, which in turn increases ATG13 protein expression. We have shown that this requires the 3' untranslated region (UTR) of ATG13 and occurs in other human cell lines, including HEK293, HepG2, and HCT116. Together, our data suggest a novel regulatory role for YBX3 of autophagy initiation through posttranscriptional control of ATG13 mRNA stability.
期刊介绍:
FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.