Ryuka Iizuka, Takahiro Ogawa, Rikako Tsukida, Keiichi Noguchi, David Hibbett, Yoko Katayama, Makoto Yoshida
Carbonyl sulfide hydrolase (COSase) is a unique enzyme that exhibits high activity towards carbonyl sulfide (COS) but low carbonic anhydrase (CA) activity, despite belonging to the CA family. COSase was initially identified in a sulfur-oxidizing bacterium and later discovered in the ascomycete Trichoderma harzianum strain THIF08. The COSase from T. harzianum has been recognized as a key enzyme in the assimilation of gaseous COS, and homologous genes are widely present not only in Ascomycota but also in Basidiomycota. Here, we characterized the COSases from the basidiomycete Gloeophyllum trabeum NBRC 6430 and T. harzianum to obtain detailed characteristics of fungal COSase. This study contributes to a better understanding of COS metabolism in fungi.
{"title":"Characterization of fungal carbonyl sulfide hydrolase belonging to clade D β-carbonic anhydrase.","authors":"Ryuka Iizuka, Takahiro Ogawa, Rikako Tsukida, Keiichi Noguchi, David Hibbett, Yoko Katayama, Makoto Yoshida","doi":"10.1002/1873-3468.15098","DOIUrl":"https://doi.org/10.1002/1873-3468.15098","url":null,"abstract":"<p><p>Carbonyl sulfide hydrolase (COSase) is a unique enzyme that exhibits high activity towards carbonyl sulfide (COS) but low carbonic anhydrase (CA) activity, despite belonging to the CA family. COSase was initially identified in a sulfur-oxidizing bacterium and later discovered in the ascomycete Trichoderma harzianum strain THIF08. The COSase from T. harzianum has been recognized as a key enzyme in the assimilation of gaseous COS, and homologous genes are widely present not only in Ascomycota but also in Basidiomycota. Here, we characterized the COSases from the basidiomycete Gloeophyllum trabeum NBRC 6430 and T. harzianum to obtain detailed characteristics of fungal COSase. This study contributes to a better understanding of COS metabolism in fungi.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142962146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhenan Liu, Joonho Yoon, Eunyoung Lee, Audrey N Chang, R Tyler Miller
Soluble, circulating Klotho (sKlotho) is essential for normal health and renal function. sKlotho is shed from the renal distal convoluted tubule (DCT), its primary source, via enzymatic cleavage. However, the physiologic mechanisms that control sKlotho production, trafficking, and shedding are not fully defined. We previously found that the G protein-coupled calcium-sensing receptor (CaSR) co-localizes with membrane-bound αKlotho and the disintegrin/metalloprotease ADAM10 in the DCT and controls sKlotho in response to CaSR ligands and pHo by activating ADAM10. Here, we advance understanding of this process by showing that tetraspanin 5 (Tspan5), a scaffolding and chaperone protein, contributes to the cell surface expression and specificity of a protein complex that includes Tspan5, ADAM10, Klotho, and CaSR. These results support a model of multiprotein complexes that confer signaling specificity beyond CaSR on G protein-coupled processes. Impact statement Systemic circulating sKlotho is a determinant for normal physiology. Studies of knockout animals established its role as an anti-aging protein. The regulatory mechanisms for Klotho production and secretion are largely unknown. We report that Tspan 5 contributes to CaSR- and ADAM10-dependent Klotho shedding from the kidney, its primary source.
{"title":"Calcium-sensing receptor- and ADAM10-mediated klotho shedding is regulated by tetraspanin 5.","authors":"Zhenan Liu, Joonho Yoon, Eunyoung Lee, Audrey N Chang, R Tyler Miller","doi":"10.1002/1873-3468.15078","DOIUrl":"https://doi.org/10.1002/1873-3468.15078","url":null,"abstract":"<p><p>Soluble, circulating Klotho (sKlotho) is essential for normal health and renal function. sKlotho is shed from the renal distal convoluted tubule (DCT), its primary source, via enzymatic cleavage. However, the physiologic mechanisms that control sKlotho production, trafficking, and shedding are not fully defined. We previously found that the G protein-coupled calcium-sensing receptor (CaSR) co-localizes with membrane-bound αKlotho and the disintegrin/metalloprotease ADAM10 in the DCT and controls sKlotho in response to CaSR ligands and pHo by activating ADAM10. Here, we advance understanding of this process by showing that tetraspanin 5 (Tspan5), a scaffolding and chaperone protein, contributes to the cell surface expression and specificity of a protein complex that includes Tspan5, ADAM10, Klotho, and CaSR. These results support a model of multiprotein complexes that confer signaling specificity beyond CaSR on G protein-coupled processes. Impact statement Systemic circulating sKlotho is a determinant for normal physiology. Studies of knockout animals established its role as an anti-aging protein. The regulatory mechanisms for Klotho production and secretion are largely unknown. We report that Tspan 5 contributes to CaSR- and ADAM10-dependent Klotho shedding from the kidney, its primary source.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142946818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seraphine Kamayirese, Laura A Hansen, Sándor Lovas
Protein-protein interactions involving 14-3-3 proteins regulate various cellular activities in normal and pathological conditions. These interactions have mostly been reported to be phosphorylation-dependent, but the 14-3-3 proteins also interact with unphosphorylated proteins. In this work, we investigated whether phosphorylation is required, or, alternatively, whether negative charges are sufficient for 14-3-3ε binding. We substituted the pThr residue of pT(502-510) peptide by residues with a varying number of negative charges and investigated the binding of the peptides to 14-3-3ε using MD simulations and biophysical methods. We demonstrated that at least one negative charge is required for the peptides to bind 14-3-3ε, although phosphorylation is not necessary, and that two negative charges are preferable for high affinity binding. This discovery opens up new approaches for designing peptide-based 14-3-3 protein inhibitors.
{"title":"Ligand recognition by 14-3-3 proteins requires negative charges but not necessarily phosphorylation.","authors":"Seraphine Kamayirese, Laura A Hansen, Sándor Lovas","doi":"10.1002/1873-3468.15077","DOIUrl":"10.1002/1873-3468.15077","url":null,"abstract":"<p><p>Protein-protein interactions involving 14-3-3 proteins regulate various cellular activities in normal and pathological conditions. These interactions have mostly been reported to be phosphorylation-dependent, but the 14-3-3 proteins also interact with unphosphorylated proteins. In this work, we investigated whether phosphorylation is required, or, alternatively, whether negative charges are sufficient for 14-3-3ε binding. We substituted the pThr residue of pT(502-510) peptide by residues with a varying number of negative charges and investigated the binding of the peptides to 14-3-3ε using MD simulations and biophysical methods. We demonstrated that at least one negative charge is required for the peptides to bind 14-3-3ε, although phosphorylation is not necessary, and that two negative charges are preferable for high affinity binding. This discovery opens up new approaches for designing peptide-based 14-3-3 protein inhibitors.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142931102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thao Nghi Hoang, Meritxell Wu-Lu, Alberto Collauto, Peter-Leon Hagedoorn, Madalina Alexandru, Maike Henschel, Shahram Kordasti, Maria Andrea Mroginski, Maxie M Roessler, Kourosh H Ebrahimi
The mitochondrial outer membrane iron-sulphur ([Fe-S]) protein mitoNEET has been extensively studied as a target of the anti-inflammatory and type-2 diabetes drug pioglitazone and as a protein affecting mitochondrial respiratory rate. Despite these extensive past studies, its molecular function has yet to be discovered. Here, we applied an interdisciplinary approach and discovered an explicit nitric oxide (NO) access site to the mitoNEET [2Fe-2S] cluster. We found that O2 and pioglitazone block NO access to the cluster, suggesting a molecular function for the mitoNEET [2Fe-2S] cluster in mitochondrial signal transduction. Our discovery hints at a new pathway via which mitochondria can sense hypoxia through O2 protection of the mitoNEET [2Fe-2S] cluster, a new paradigm in understanding the importance of [Fe-S] clusters for gasotransmitter signal transduction in eukaryotes.
{"title":"The [2Fe-2S] cluster of mitochondrial outer membrane protein mitoNEET has an O<sub>2</sub>-regulated nitric oxide access tunnel.","authors":"Thao Nghi Hoang, Meritxell Wu-Lu, Alberto Collauto, Peter-Leon Hagedoorn, Madalina Alexandru, Maike Henschel, Shahram Kordasti, Maria Andrea Mroginski, Maxie M Roessler, Kourosh H Ebrahimi","doi":"10.1002/1873-3468.15097","DOIUrl":"https://doi.org/10.1002/1873-3468.15097","url":null,"abstract":"<p><p>The mitochondrial outer membrane iron-sulphur ([Fe-S]) protein mitoNEET has been extensively studied as a target of the anti-inflammatory and type-2 diabetes drug pioglitazone and as a protein affecting mitochondrial respiratory rate. Despite these extensive past studies, its molecular function has yet to be discovered. Here, we applied an interdisciplinary approach and discovered an explicit nitric oxide (NO) access site to the mitoNEET [2Fe-2S] cluster. We found that O<sub>2</sub> and pioglitazone block NO access to the cluster, suggesting a molecular function for the mitoNEET [2Fe-2S] cluster in mitochondrial signal transduction. Our discovery hints at a new pathway via which mitochondria can sense hypoxia through O<sub>2</sub> protection of the mitoNEET [2Fe-2S] cluster, a new paradigm in understanding the importance of [Fe-S] clusters for gasotransmitter signal transduction in eukaryotes.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142931103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annabella Nouel Barreto, Luis G Cuello, Maria E Zoghbi
Lipid nanodiscs have become a widely used approach for studying membrane proteins thanks to several advantages they offer. They have been especially useful for studying ABC transporters, despite the growing concern about the possible restriction of the conformational changes of the transporters due to the small size of the discs. Here, we performed a systematic study to determine the effect of the nanodisc size on the ATPase activity of model ABC transporters from human, plant, and bacteria. Our data confirm that the activity of the transporters and their response to regulatory molecules is affected by the nanodisc size. Our findings suggest the use of larger membrane scaffold proteins (MSPs), such as MSP2N2 nanodiscs, to minimize alterations caused by the commonly used small MSP1D1.
{"title":"ABC transporter activity is affected by the size of lipid nanodiscs.","authors":"Annabella Nouel Barreto, Luis G Cuello, Maria E Zoghbi","doi":"10.1002/1873-3468.15096","DOIUrl":"https://doi.org/10.1002/1873-3468.15096","url":null,"abstract":"<p><p>Lipid nanodiscs have become a widely used approach for studying membrane proteins thanks to several advantages they offer. They have been especially useful for studying ABC transporters, despite the growing concern about the possible restriction of the conformational changes of the transporters due to the small size of the discs. Here, we performed a systematic study to determine the effect of the nanodisc size on the ATPase activity of model ABC transporters from human, plant, and bacteria. Our data confirm that the activity of the transporters and their response to regulatory molecules is affected by the nanodisc size. Our findings suggest the use of larger membrane scaffold proteins (MSPs), such as MSP2N2 nanodiscs, to minimize alterations caused by the commonly used small MSP1D1.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142921187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-10-24DOI: 10.1002/1873-3468.15045
Barnava Banerjee, Chinmay K Kamale, Abhishek B Suryawanshi, Subrata Dasgupta, Santosh Noronha, Prasenjit Bhaumik
Exo-β-(1,3)-glucanases are promising enzymes for use in the biofuel industry as they hydrolyse sugars such as laminarin, a major constituent of the algal cell wall. This study reports structural and biochemical characterizations of Aspergillus oryzae exo-β-(1,3)-glucanase (AoBgl) belonging to the GH5 family. Purified AoBgl hydrolyses β-(1,3)-glycosidic linkages of the oligosaccharide laminaritriose and the polysaccharide laminarin effectively. We have determined three high-resolution structures of AoBgl: (a) the apo form at 1.75 Å, (b) the complexed form with bound cellobiose at 1.73 Å and (c) the glucose-bound form at 1.20 Å. The crystal structures, molecular dynamics simulation studies and site-directed mutagenesis reveal the mode of substrate binding and interactions at the active site. The results also indicate that AoBgl effectively hydrolyses trisaccharides and higher oligosaccharides. The findings from our structural and biochemical studies would aid in rational engineering efforts to generate superior AoBgl variants and similar GH5 enzymes for their industrial use.
外-β-(1,3)-葡聚糖酶是一种很有希望用于生物燃料工业的酶,因为它们能水解糖类,如海藻细胞壁的主要成分--层聚糖。本研究报告了属于 GH5 家族的黑曲霉外-β-(1,3)-葡聚糖酶(AoBgl)的结构和生物化学特征。纯化的 AoBgl 能有效地水解低聚糖层叠三糖和多糖层叠糖的β-(1,3)-糖苷键。我们测定了 AoBgl 的三种高分辨率结构:(a) 1.75 Å 的 apo 形式;(b) 1.73 Å 的与结合纤维二糖的复合物形式;(c) 1.20 Å 的与葡萄糖结合的形式。晶体结构、分子动力学模拟研究和定点突变揭示了底物结合模式和活性位点上的相互作用。研究结果还表明,AoBgl 能有效水解三糖和更高的寡糖。我们的结构和生化研究结果将有助于合理的工程设计工作,以产生更好的 AoBgl 变体和类似的 GH5 酶,供工业使用。
{"title":"Crystal structures of Aspergillus oryzae exo-β-(1,3)-glucanase reveal insights into oligosaccharide binding, recognition, and hydrolysis.","authors":"Barnava Banerjee, Chinmay K Kamale, Abhishek B Suryawanshi, Subrata Dasgupta, Santosh Noronha, Prasenjit Bhaumik","doi":"10.1002/1873-3468.15045","DOIUrl":"10.1002/1873-3468.15045","url":null,"abstract":"<p><p>Exo-β-(1,3)-glucanases are promising enzymes for use in the biofuel industry as they hydrolyse sugars such as laminarin, a major constituent of the algal cell wall. This study reports structural and biochemical characterizations of Aspergillus oryzae exo-β-(1,3)-glucanase (AoBgl) belonging to the GH5 family. Purified AoBgl hydrolyses β-(1,3)-glycosidic linkages of the oligosaccharide laminaritriose and the polysaccharide laminarin effectively. We have determined three high-resolution structures of AoBgl: (a) the apo form at 1.75 Å, (b) the complexed form with bound cellobiose at 1.73 Å and (c) the glucose-bound form at 1.20 Å. The crystal structures, molecular dynamics simulation studies and site-directed mutagenesis reveal the mode of substrate binding and interactions at the active site. The results also indicate that AoBgl effectively hydrolyses trisaccharides and higher oligosaccharides. The findings from our structural and biochemical studies would aid in rational engineering efforts to generate superior AoBgl variants and similar GH5 enzymes for their industrial use.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":"53-73"},"PeriodicalIF":3.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-10-04DOI: 10.1002/1873-3468.15030
Huma Shireen, Fatima Batool, Hizran Khatoon, Nazia Parveen, Noor Us Sehar, Irfan Hussain, Shahid Ali, Amir Ali Abbasi
Enhancers are non-coding cis-regulatory elements crucial for transcriptional regulation. Mutations in enhancers can disrupt gene regulation, leading to disease phenotypes. Identifying enhancers and their tissue-specific activity is challenging due to their lack of stereotyped sequences. This study presents a sequence-based computational model that uses combinatorial transcription factor (TF) genomic occupancy to predict tissue-specific enhancers. Trained on diverse datasets, including ENCODE and Vista enhancer browser data, the model predicted 25 000 forebrain-specific cis-regulatory modules (CRMs) in the human genome. Validation using biochemical features, disease-associated SNPs, and in vivo zebrafish analysis confirmed its effectiveness. This model aids in predicting enhancers lacking well-characterized chromatin features, complementing experimental approaches in tissue-specific enhancer discovery.
增强子是对转录调控至关重要的非编码顺式调控元件。增强子突变会破坏基因调控,导致疾病表型。由于增强子缺乏定型序列,识别增强子及其组织特异性活性具有挑战性。本研究提出了一种基于序列的计算模型,利用组合转录因子(TF)基因组占据来预测组织特异性增强子。该模型在不同的数据集(包括 ENCODE 和 Vista 增强子浏览器数据)上进行了训练,预测了人类基因组中 25000 个前脑特异性顺式调控模块(CRMs)。利用生化特征、疾病相关 SNP 和体内斑马鱼分析进行的验证证实了该模型的有效性。该模型有助于预测缺乏良好染色质特征的增强子,补充了发现组织特异性增强子的实验方法。
{"title":"Predicting genome-wide tissue-specific enhancers via combinatorial transcription factor genomic occupancy analysis.","authors":"Huma Shireen, Fatima Batool, Hizran Khatoon, Nazia Parveen, Noor Us Sehar, Irfan Hussain, Shahid Ali, Amir Ali Abbasi","doi":"10.1002/1873-3468.15030","DOIUrl":"10.1002/1873-3468.15030","url":null,"abstract":"<p><p>Enhancers are non-coding cis-regulatory elements crucial for transcriptional regulation. Mutations in enhancers can disrupt gene regulation, leading to disease phenotypes. Identifying enhancers and their tissue-specific activity is challenging due to their lack of stereotyped sequences. This study presents a sequence-based computational model that uses combinatorial transcription factor (TF) genomic occupancy to predict tissue-specific enhancers. Trained on diverse datasets, including ENCODE and Vista enhancer browser data, the model predicted 25 000 forebrain-specific cis-regulatory modules (CRMs) in the human genome. Validation using biochemical features, disease-associated SNPs, and in vivo zebrafish analysis confirmed its effectiveness. This model aids in predicting enhancers lacking well-characterized chromatin features, complementing experimental approaches in tissue-specific enhancer discovery.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":"100-119"},"PeriodicalIF":3.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zinc transporters (ZnTs) act as H+/Zn2+ antiporters, crucial for zinc homeostasis. Brain-specific ZnT3 expressed in synaptic vesicles transports Zn2+ from the cytosol into vesicles and is essential for neurotransmission, with ZnT3 dysfunction associated with neurological disorders. Ubiquitously expressed ZnT4 localized to lysosomes facilitates the Zn2+ efflux from the cytosol to lysosomes, mitigating the cell injury risk. Despite their importance, the structures and Zn2+ transport mechanisms remain unclear. We characterized the three-dimensional structures of human ZnT3 (inward-facing) and ZnT4 (outward-facing) using cryo-electron microscopy. By combining these structures, we assessed the conformational changes that could occur within the transmembrane domain during Zn2+ transport. Our results provide a structural basis for a more comprehensive understanding of the H+/Zn2+ exchange mechanisms exhibited by ZnTs.
{"title":"Cryo-EM structures of the zinc transporters ZnT3 and ZnT4 provide insights into their transport mechanisms.","authors":"Hanako Ishida, Riri Yo, Zhikuan Zhang, Toshiyuki Shimizu, Umeharu Ohto","doi":"10.1002/1873-3468.15047","DOIUrl":"10.1002/1873-3468.15047","url":null,"abstract":"<p><p>Zinc transporters (ZnTs) act as H<sup>+</sup>/Zn<sup>2+</sup> antiporters, crucial for zinc homeostasis. Brain-specific ZnT3 expressed in synaptic vesicles transports Zn<sup>2+</sup> from the cytosol into vesicles and is essential for neurotransmission, with ZnT3 dysfunction associated with neurological disorders. Ubiquitously expressed ZnT4 localized to lysosomes facilitates the Zn<sup>2+</sup> efflux from the cytosol to lysosomes, mitigating the cell injury risk. Despite their importance, the structures and Zn<sup>2+</sup> transport mechanisms remain unclear. We characterized the three-dimensional structures of human ZnT3 (inward-facing) and ZnT4 (outward-facing) using cryo-electron microscopy. By combining these structures, we assessed the conformational changes that could occur within the transmembrane domain during Zn<sup>2+</sup> transport. Our results provide a structural basis for a more comprehensive understanding of the H<sup>+</sup>/Zn<sup>2+</sup> exchange mechanisms exhibited by ZnTs.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":"41-52"},"PeriodicalIF":3.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726163/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNA is modified by > 170 chemical modifications that affect its structure and function. Accordingly, RNA modifications have been implicated in regulation of gene expression and cellular outcomes in a variety of species spanning the phylogenetic tree. The study of RNA modifications is accelerated by generation of high-throughput methods for detecting RNA modifications at single base resolution. Here, we review recent advancement in next generation sequencing based approaches for detection of 14 distinct RNA modifications present in rRNA, tRNA and mRNA. We further outline the molecular and computational principles underlying currently available methods.
{"title":"High-throughput detection of RNA modifications at single base resolution.","authors":"Keren Ron, Joshua Kahn, Nofar Malka-Tunitsky, Aldema Sas-Chen","doi":"10.1002/1873-3468.15052","DOIUrl":"10.1002/1873-3468.15052","url":null,"abstract":"<p><p>RNA is modified by > 170 chemical modifications that affect its structure and function. Accordingly, RNA modifications have been implicated in regulation of gene expression and cellular outcomes in a variety of species spanning the phylogenetic tree. The study of RNA modifications is accelerated by generation of high-throughput methods for detecting RNA modifications at single base resolution. Here, we review recent advancement in next generation sequencing based approaches for detection of 14 distinct RNA modifications present in rRNA, tRNA and mRNA. We further outline the molecular and computational principles underlying currently available methods.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":"19-32"},"PeriodicalIF":3.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726149/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142617506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-10-16DOI: 10.1002/1873-3468.15035
Liva Pfuhler, Silina Awad, William Skipper, Jeremy Lavietes, Thomas Sah, Kayla Ho, Radha Ivanova, Amy Cooke
Autophagy, a highly conserved form of cellular recycling, is essential for cellular homeostasis. Its dysregulation has been linked to neurodegenerative diseases and various cancers, including breast cancer. We set out to determine if the RNA-binding protein (RBP) YBX3 regulates autophagy mRNAs, as previous findings suggest YBX3 depletion reduces distinct autophagy transcripts. We found that YBX3 interacts with and stabilizes the mRNA of the autophagy initiation factor ATG13 in HeLa, which in turn increases ATG13 protein expression. We have shown that this requires the 3' untranslated region (UTR) of ATG13 and occurs in other human cell lines, including HEK293, HepG2, and HCT116. Together, our data suggest a novel regulatory role for YBX3 of autophagy initiation through posttranscriptional control of ATG13 mRNA stability.
{"title":"The autophagy initiation factor ATG13 mRNA is stabilized by the RNA-binding protein YBX3.","authors":"Liva Pfuhler, Silina Awad, William Skipper, Jeremy Lavietes, Thomas Sah, Kayla Ho, Radha Ivanova, Amy Cooke","doi":"10.1002/1873-3468.15035","DOIUrl":"10.1002/1873-3468.15035","url":null,"abstract":"<p><p>Autophagy, a highly conserved form of cellular recycling, is essential for cellular homeostasis. Its dysregulation has been linked to neurodegenerative diseases and various cancers, including breast cancer. We set out to determine if the RNA-binding protein (RBP) YBX3 regulates autophagy mRNAs, as previous findings suggest YBX3 depletion reduces distinct autophagy transcripts. We found that YBX3 interacts with and stabilizes the mRNA of the autophagy initiation factor ATG13 in HeLa, which in turn increases ATG13 protein expression. We have shown that this requires the 3' untranslated region (UTR) of ATG13 and occurs in other human cell lines, including HEK293, HepG2, and HCT116. Together, our data suggest a novel regulatory role for YBX3 of autophagy initiation through posttranscriptional control of ATG13 mRNA stability.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":"89-99"},"PeriodicalIF":3.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726137/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142461347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}